

## E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 (GIF) Impact Factor: 0.549 IJFAS 2022; 10(3): 146-153

© 2022 IJFAS www.fisheriesjournal.com

Received: 24-03-2022 Accepted: 29-04-2022

#### Debabrata Das

FRAI Division, ICAR-CIFRI, Barrackpore, Kolkata, West Bengal, India

#### Prakriti Das

Department of Biotechnology, Amity University, New Town, Kolkata, West Bengal, India

#### Aranya Das

Department of CSE, Chandigarh University, Mohali, Chandigarh, India

## Santa Ana Das

AIMA Academy in Modern Ayurvedics, North Ghugia, Chakdaha, Nadia, West Bengal, India

Corresponding Author: Debabrata Das FRAI Division, ICAR-CIFRI, Barrackpore, Kolkata, West Bengal, India

# Ecotechnology of isoprene, resembles, ph beyond central-dogma to spoil evil-helix of virions or else their genetic materials in a natural gene-editing process of ayurveda

# Debabrata Das, Prakriti Das, Aranya Das and Santa Ana Das

**DOI:** https://doi.org/10.22271/fish.2022.v10.i3b.2688

#### **Abstract**

Digitally Ayurveda totally can spoil evil proteins, virions, microbes mere foreign-proteins, unlike multicellulars, can easily get denatured with plants acids (pH < 6.5) or with plants alkaloids (pH > 8.0) and Isoprene may in between. This research study found in fisheries and mankind The very well known fact to mankind is that pathogenic or foreign-proteins, namely virus and bacteria can be denatured with mild Ayuyrvedic acids or Alkaloids. Ground-truth microbial counts and digital parameters of ecology can find relations viz. machine learning techniques, of departing hydrophilic viruses, microbes with hydrophobicity of hydrocarbons or else reactive Isoprene. In earlier studies author found that hydrocarbon Isoprene the smallest unit of essential Authors are running Ayurveda gardens with fascinating plant specieses namely Justicia spp and Citrus plants those are releasing plants acids, Isoprene etc can protect and prevent any viruses with Isoprene instant proofs. May be gene editing of of all evil viruses with Isoprene remains be pre historic and established since Ayurvedic era Modern digitalresearch of Chromatography, Distillations or digital electronics can find that Isoprene and few others when emitted by plants or algae can prevent viruses and with a fact that oldest prescription of Ayurveda may be the worthiest to the mankind. Also natural gene-editing possible with Ayurveda science since prehistoric era and re-invented. Today Ayurveda science may be as advanced and authentic with perspective to gene editing or gene-therapy. In recent years we find whole world is full panicked with every wordgoes starting with viruses, their all kind of mutants etc. However once we take very worthy Isoprene to Terpenoids from plants and Fatty bio-molecules etc. this may be God gifted bio-molecules that prevent and cure virus attack or even its mutants by damaging their genetic traits. Modern Ayurveda says any anomaly in mankind caused by viruses or its mutants can be cured with natural gene-editing plants i.e. Justicia spp, with stated Ayurveda science containing Isoprene, acting gene-editing enzyme, non conventional and non protein bio-molecule by forming isoprene phosphate reversibly, along with all the precursors of desiring genetic-base materials such as Purine and Pyrimidine obtainable from very popular Alkaloid biomolecules namely Vasicine, Vascineone and Quinazoline, respectively sourced from Justacia spp, or else simply fed them with Citrus spp or Switenia mahagony leaves all this containing Isoprene and hence animals fed gets escaped from any kind of virus diseases. All this Ayurvedic plants since pre-historic era and proven true Ultra natural all the mentioned biomolecules also obtainable at their respective temperature of vapour point (vp) from individual plant extracts. Whereas examples are given with aquatic data of fisheries environments.

Keywords: Ecotechnology, ayurveda, digital parameters in controlling virus and microbes

### Introduction

In recent days digital ecotechnology based reserach studies (Das *et al.* 2020-22 of relevances) are applied to find suitable growth specific to either plants or animals. All individual species biology remains confined certain specific range of pH. Either internally or external cellular and ecological environment. This reserach communication also finds that aquatic microbes remain non-existence beyoynd the range of pH 6.5 to 8.5. Accordingly microbial measures can be possible either any cell to grow or to make any evils become vanish. Modern ecotechnology syas lets be digital to minimise errors. In recent days demand of digital ecology may rising high to higher. Measurable ecological parameters that relates to animal or cell biology. Ecotechnology here we find machine learning Techniques in obtaining relations among the ecological parateres of non-living to living perspective to envoronmental approaches.

Ecotechnology in mankind may be a perpetual applied science in obtaining relations among the different parameters or objects in any Ecology. Detectable or measurable either digitally or computerised or satellite based research studies. This may be a Holistic environmental editing process as well. Authors often found that if disease-less then growth and fecundity are negatively correlated with TDS and CEC and controlled rationally with mentioned Digital environments and when non-diseases. As ecological microbes can be relates with digital parameters. Isoprene may be smallest non conventional non protein enzyme that may beyond the central dogma, can correct environments and evil helix of viruses ecotechnology a never ending science for mankind found with modern Ayurveda science. Author has communicated a simple science in the domain of Biochemistry with Ecotechnlogy may be for esteem mankind. Digital model of Ayurveda with Citrus. Oranges, Switenia etc. can correct Environments with Isoprene that can spoil Evil Helix of Viruses even defined jointly by James Watson and Francis Crick s double helix Stranded Model. May all happy, replication, transcription and translation since then invention of Central Dogma. However there may be any foul helix that can be prevented or foul proteins i.e. Virions derived from their nucleic acid can be prevented simply by Fatty holly Biomolecule mere Isoprene. Since then we escaped from COVIDs here are learning inside on evils of Helix of Genetic materials of Viruses and found prevention and control can be possible by inducted holly Isoprene biomolecule similar to Hydrocarbon inhibiting virus and bacteria. Ayurveda plants can act Isoprene as Non-Protein and simplest non conventional may be termed a new generation enzyme, when defused into microbial cells and able to destroy helical genetic Materials of any virus or unicellular microbes, and whether their nucleic-acid by biochemically forming Isoprenephosphate and hence virus genetic materials get restricted, prevented and simply cured by holly Isoprene has three roles firstly hydrophobic repulsions, secondly very active and gets hydrogenated by genetic material once diffused in, thirdly forms Isoprene phosphate with virus genetic material and destroyed. This is applicable in Fisheries and Mankind. All we may know Isoprene is the simplest nano-particle or a smallest unit of Fatty bio-molecule can defeat all the evils virus pathogens or cellular pathogens when diffused in the pathogenic cell and destroy evil helix of Virus forming Isoprene-phosphate and hence Virus genetic material may get spoiled.

# **Material and Method**

Additional denaturation process of Virions may be possuible beyond the pH ranges of 6.5 < pH < 8.5 of mild acids and mild alkaloids of Ayurveda plants, such plant acids are namely Ascorbic acid, Citric acid, Tartaric acid, Malic acid. Maleic acid. Denaturation of Virions by mild plants' alkalods as well supplying suplementary base materials (purine and pyrimidine or its precursors to natural gene-editing process obtained from Ayurvedic plants. Vasicine, Vascineone. Quinazoline, Nicotine and Niacine (precursor of pyrimidine

base), Caffeine (precursor of purine bases). All plant acids and alkaloids if not natural can be extracted from Ayurvedic plants by scientific distillation process and can be applied as virus or microbial remedies and in Mankind. Also the major biochemical reactions by Isoprene as an enzyme very reactive biomolecule often synthesized by plankton, terrestrial plant population and animals. Author presumed that Isoprene act as first a potent non-protein and non conventional enzyme that can spoil virus nucloids or microbes (Flowchart 1.) and resulting non-replication of virus with following steps

- (1) Genetic material of Virus (nucloid) + Isoprene = Bases + Isoprne-phosphate
- (2) Isoprene Phosphate + Fatty acids = Phospho Lipid + Isoprene
- (3) Isoprene Virus nucloid + Lipids = Bases + Phospholipids

**Flowchart 1:** Isoprene inducted biochemical reaction methodology of natural gene editing of virions and microbes applicable only for unicellular germe or microbes for being Isoprene is a nano particle can diffuse.

Ecotechnology also made to find relations Fig 1.1 with Machine-learning techniques, since we know there are digital parameters in controlling virus and microbes recent dauys data science is used for interpretations and prediciction and decision making. A long term data for five years period of lower stretches of Ganges river as an example is analysed with modelling software SPSS (Table 1 to Table 6) Data comprizing aquatic microbes which is lineralr negetively correleated water pH in the environments in certain range (6.5 to 8.5) Beyound the mentioned range there are non existence of aquatic micribes found in environments to prove the earlier hypothesis. Study found pH is negetively correlated with all aquatic Microbes again simple Hydrocarbon derivatives and Isoprene also negetively correlated with aquatic Microbes. Ecotechnology we find are the relations among all the possible correlated living and non-living objects of any Ecology. Ecotechnologically pH helps denaturation process of evil-proteins of virions, microbes etc. with plants'-acids (pH < 6.5) or plants'-alkaloids (pH > 8.5) and bio-molecule isoprene (6.5 <= pH <= 8.5) can spoil Nucloids of unicellular pathogens with Ayurveda. Traditionally known that Proteins get denatured with pH and nucloids of unicellular germs get denatured with Isoprene. Hence digitally we totally can spoil evil proteins, virions, microbes mere foreign-proteins unlike multi-cellular organisms and can easily get deactivated with plants acids (pH < 6.5) or with plants alkaloids (pH > 8.5) and Isoprene (6.5  $\leq$  pH  $\leq$  8.5) of *Ayurveda*, All plant-acids and plants-alkaloids along with Isoprene act biochemically towards preventing or controlling all virions, bacteria, unicellular microbes in terms of natural denaturation processes Science behind the facts are that changing pH in environments can break the Hydrogen-bonds of virions or microbial proteins etc through natural denaturation process of microbial proteins. Hi-tech biomolecule Isoprene, a nanoparticle (<3nm) through cellular diffusions and forming reversibly Isoprene-phospahe with nucleic acids of Virions, Microbes etc., unlike the situation in multi-cellular organisms. This above auspicious research studies may truely be found in every fisheries and mankind.

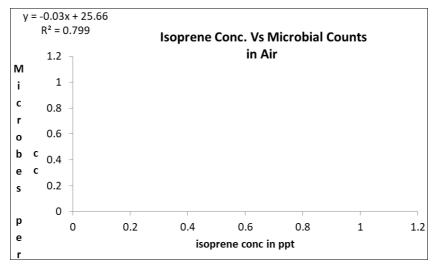



Fig 1.1: Isoprene conc in ppt Vs. Microbial counts n-1 cc in Air with Ecotechnological relations

Table 1: Aquatic microbial relations with pH with Machine learning techniques found in lower stretches of river Ganges.

|           | Correlations |                         |          |          |        |       |  |  |  |  |
|-----------|--------------|-------------------------|----------|----------|--------|-------|--|--|--|--|
|           | Control      | l Variables             | Total_CO | Fecal_CO | Entero | PH    |  |  |  |  |
|           |              | Correlation             | 1.000    | .948     | .849   | 100   |  |  |  |  |
|           | Total_CO     | Significance (1-tailed) |          | .000     | .000   | .026  |  |  |  |  |
|           |              | df                      | 0        | 380      | 380    | 380   |  |  |  |  |
|           | Fecal_CO     | Correlation             | .948     | 1.000    | .841   | 096   |  |  |  |  |
|           |              | Significance (1-tailed) | .000     | •        | .000   | .030  |  |  |  |  |
| Watertem  |              | df                      | 380      | 0        | 380    | 380   |  |  |  |  |
| watertein |              | Correlation             | .849     | .841     | 1.000  | 068   |  |  |  |  |
|           | Entero       | Significance (1-tailed) | .000     | .000     |        | .094  |  |  |  |  |
|           |              | df                      | 380      | 380      | 0      | 380   |  |  |  |  |
|           |              | Correlation             | 100      | 096      | 068    | 1.000 |  |  |  |  |
|           | PH           | Significance (1-tailed) | .026     | .030     | .094   |       |  |  |  |  |
|           |              | df                      | 380      | 380      | 380    | 0     |  |  |  |  |

Table 2: Aquatic microbial relations with pH with Machine learning techniques found in lower stretches of river Ganges just an example

|             | Correlations |                         |          |          |        |       |  |  |  |  |
|-------------|--------------|-------------------------|----------|----------|--------|-------|--|--|--|--|
|             | Control      | Variables               | Total_CO | Fecal_CO | Entero | PH    |  |  |  |  |
|             |              | Correlation             | 1.000    | .948     | .849   | 100   |  |  |  |  |
|             | Total_CO     | Significance (2-tailed) |          | .000     | .000   | .051  |  |  |  |  |
|             |              | df                      | 0        | 380      | 380    | 380   |  |  |  |  |
|             |              | Correlation             | .948     | 1.000    | .841   | 096   |  |  |  |  |
|             | Fecal_CO     | Significance (2-tailed) | .000     |          | .000   | .060  |  |  |  |  |
| Watertem    |              | df                      | 380      | 0        | 380    | 380   |  |  |  |  |
| vv atertern |              | Correlation             | .849     | .841     | 1.000  | 068   |  |  |  |  |
|             | Entero       | Significance (2-tailed) | .000     | .000     |        | .187  |  |  |  |  |
|             |              | df                      | 380      | 380      | 0      | 380   |  |  |  |  |
|             |              | Correlation             | 100      | 096      | 068    | 1.000 |  |  |  |  |
|             | PH           | Significance (2-tailed) | .051     | .060     | .187   |       |  |  |  |  |
|             |              | df                      | 380      | 380      | 380    | 0     |  |  |  |  |

**Table 3:** Hydrocarbon derivatives in Aquatic Environments as well negatively controlling aquatic microbes found in lower stretches of river Ganges just an example

|           | Correlations |                         |          |          |        |       |      |  |  |  |  |
|-----------|--------------|-------------------------|----------|----------|--------|-------|------|--|--|--|--|
|           | Control      | Variables               | Total_CO | Fecal_CO | Entero | HCH1  | HCH2 |  |  |  |  |
|           |              | Correlation             | 1.000    | .948     | .849   | 015   | 053  |  |  |  |  |
|           | Total_CO     | Significance (1-tailed) |          | .000     | .000   | .382  | .152 |  |  |  |  |
|           |              | df                      | 0        | 380      | 380    | 380   | 380  |  |  |  |  |
|           | Fecal_CO     | Correlation             | .948     | 1.000    | .841   | 038   | 028  |  |  |  |  |
| Watertem  |              | Significance (1-tailed) | .000     |          | .000   | .228  | .296 |  |  |  |  |
| watertein |              | df                      | 380      | 0        | 380    | 380   | 380  |  |  |  |  |
|           |              | Correlation             | .849     | .841     | 1.000  | 014   | 099  |  |  |  |  |
|           | Entero       | Significance (1-tailed) | .000     | .000     |        | .391  | .026 |  |  |  |  |
|           |              | df                      | 380      | 380      | 0      | 380   | 380  |  |  |  |  |
|           | HCH1         | Correlation             | 015      | 038      | 014    | 1.000 | 056  |  |  |  |  |

|      | Significance (1-tailed) | .382 | .228 | .391 |      | .139  |
|------|-------------------------|------|------|------|------|-------|
|      | df                      | 380  | 380  | 380  | 0    | 380   |
|      | Correlation             | 053  | 028  | 099  | 056  | 1.000 |
| HCH2 | Significance (1-tailed) | .152 | .296 | .026 | .139 |       |
|      | df                      | 380  | 380  | 380  | 380  | 0     |

**Table 4:** Hydrocarbon derivatives in Aquatic Environments negatively controlling aquatic Microbes found in lower stretches of river Ganges just an example

|    | Correlations |                         |          |          |        |       |       |  |  |  |  |
|----|--------------|-------------------------|----------|----------|--------|-------|-------|--|--|--|--|
|    | Co           | ntrol Variables         | Total_CO | Fecal_CO | Entero | HCH1  | HCH2  |  |  |  |  |
|    |              | Correlation             | 1.000    | .957     | .881   | 004   | 036   |  |  |  |  |
|    | Total_CO     | Significance (2-tailed) |          | .000     | .000   | .938  | .481  |  |  |  |  |
|    |              | df                      | 0        | 380      | 380    | 380   | 380   |  |  |  |  |
|    |              | Correlation             | .957     | 1.000    | .872   | 025   | 014   |  |  |  |  |
|    | Fecal_CO     | Significance (2-tailed) | .000     |          | .000   | .625  | .783  |  |  |  |  |
|    |              | df                      | 380      | 0        | 380    | 380   | 380   |  |  |  |  |
|    |              | Correlation             | .881     | .872     | 1.000  | 002   | 064   |  |  |  |  |
| PH | Entero       | Significance (2-tailed) | .000     | .000     |        | .969  | .212  |  |  |  |  |
|    |              | df                      | 380      | 380      | 0      | 380   | 380   |  |  |  |  |
|    |              | Correlation             | 004      | 025      | 002    | 1.000 | 050   |  |  |  |  |
|    | HCH1         | Significance (2-tailed) | .938     | .625     | .969   | ٠     | .326  |  |  |  |  |
|    |              | df                      | 380      | 380      | 380    | 0     | 380   |  |  |  |  |
|    |              | Correlation             | 036      | 014      | 064    | 050   | 1.000 |  |  |  |  |
|    | HCH2         | Significance (2-tailed) | .481     | .783     | .212   | .326  |       |  |  |  |  |
|    |              | df                      | 380      | 380      | 380    | 380   | 0     |  |  |  |  |

Table 5: Aquatic microbes Coliform with pH in Ecotechnological relations of parameters

| ANOVA                                      |          |     |          |        |      |  |  |  |
|--------------------------------------------|----------|-----|----------|--------|------|--|--|--|
| Sum of Squares   df   Mean Square   F   Si |          |     |          |        | Sig. |  |  |  |
| Regression                                 | 1.166E11 | 1   | 1.166E11 | 15.023 | .000 |  |  |  |
| Residual                                   | 2.958E12 | 381 | 7.764E9  |        |      |  |  |  |
| Total                                      | 3.075E12 | 382 |          |        |      |  |  |  |

The independent variable is PH

Table 6: Aquatic microbes Coliform with pH in Ecotechnological relations of coefficient

|            | Coefficients  |                 |                                  |        |      |  |  |  |  |
|------------|---------------|-----------------|----------------------------------|--------|------|--|--|--|--|
|            | Unstandardize | ed Coefficients | <b>Standardized Coefficients</b> | t      | Sig. |  |  |  |  |
|            | В             | Std. Error      | Beta                             |        |      |  |  |  |  |
| PH         | -60786.472    | 15682.915       | 195                              | -3.876 | .000 |  |  |  |  |
| (Constant) | 582791.275    | 123426.843      |                                  | 4.722  | .000 |  |  |  |  |

Table 7: Aquatic microbes Fecal coliform with pH in Ecotechnological relations of parameters

| ANOVA      |                |     |             |        |      |  |  |  |
|------------|----------------|-----|-------------|--------|------|--|--|--|
|            | Sum of Squares | df  | Mean Square | F      | Sig. |  |  |  |
| Regression | 5.156E10       | 1   | 5.156E10    | 14.038 | .000 |  |  |  |
| Residual   | 1.399E12       | 381 | 3.673E9     |        |      |  |  |  |
| Total      | 1.451E12       | 382 |             |        |      |  |  |  |

The independent variable is PH

Table 8: Aquatic microbes Fecal coliform with pH in Ecotechnological relations of coefficient

|            | Coefficients                                        |            |      |        |      |  |  |  |  |  |
|------------|-----------------------------------------------------|------------|------|--------|------|--|--|--|--|--|
|            | Unstandardized Coefficients Standardized Coefficien |            |      |        | Sig. |  |  |  |  |  |
|            | В                                                   | Std. Error | Beta |        |      |  |  |  |  |  |
| PH         | -40413.507                                          | 10786.224  | 189  | -3.747 | .000 |  |  |  |  |  |
| (Constant) | 382657.415                                          | 84889.164  |      | 4.508  | .000 |  |  |  |  |  |

Table 9: Aquatic microbes Entero bacteria with pH in Ecotechnological relations of parameters

| ANOVA                                      |         |     |             |        |      |  |  |
|--------------------------------------------|---------|-----|-------------|--------|------|--|--|
| Sum of Squares   df   Mean Square   F   Si |         |     |             |        | Sig. |  |  |
| Regression                                 | 3.088E7 | 1   | 3.088E7     | 12.724 | .000 |  |  |
| Residual                                   | 9.246E8 | 381 | 2426743.716 |        |      |  |  |
| Total                                      | 9.555E8 | 382 |             |        |      |  |  |

The independent variable is PH

**Table 10:** Aquatic microbes Entero bacteria with pH in Ecotechnological relations of coefficients

|            | Coefficients                                          |            |      |        |      |  |  |  |  |
|------------|-------------------------------------------------------|------------|------|--------|------|--|--|--|--|
|            | Unstandardized Coefficients Standardized Coefficients |            |      |        | Sig. |  |  |  |  |
|            | В                                                     | Std. Error | Beta |        |      |  |  |  |  |
| PH         | -988.997                                              | 277.258    | 180  | -3.567 | .000 |  |  |  |  |
| (Constant) | 10257.744                                             | 2182.063   |      | 4.701  | .000 |  |  |  |  |

# **Results and Discussion**

Ecotechnology are the relations with Machine learning techniques found with digital parameters in controlling virus and microbes This staed scientific communication dealt microbial phenomenons with machine learning techniques (Table 1 to Table 6) described inhibition of microbes can be applied to Virusses as well both in terrestrial and aquatic

environments. With given example of aquatic data of aquatic environments related to Isoprene. Isoprene. And simple hydrocarbon inibit Coliform, Fecal coliform, Enteroand Platy Bacteria are all found visible only within the range of pH 6.5 to 8.5 and all their trends are negatively correlated with aquatic pH

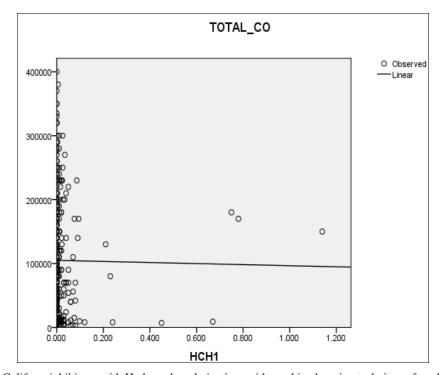



Fig 1: Aquatic microbial Coliform inhibitons with Hydrocarbon derivatives with machine learning techniques found in lower stretches of river Ganges

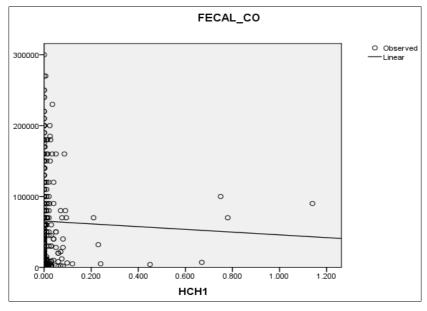
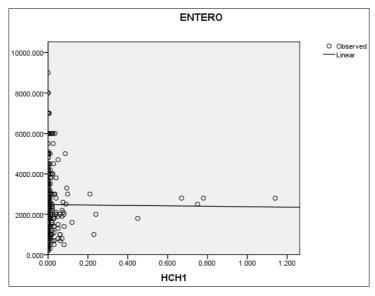




Fig 2: Aquatic microbial Fecal Coliform inhibitions relations with Hydrocarbon derivatives with machine learning techniques found in lower stretches of river Ganges.



**Fig 3:** Aquatic microbial Entero Bacteris inhibitory relations with Hydrocarbon derivatives with machine learning techniques found in lower stretches of river Ganges.

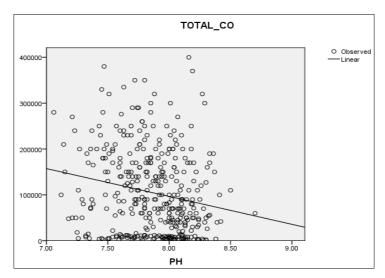



Fig 4: Aquatic microbial Coliform relations negatively correlated with pH with machine learning techniques found in lower stretches of river Ganges

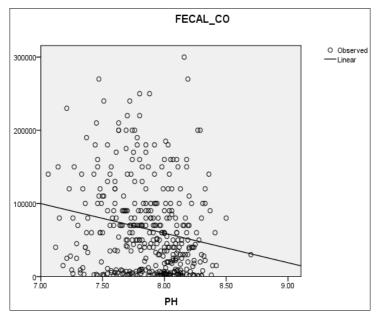



Fig 5: Aquatic microbial Fecalcoli-form Bacteria relations negatively correlated with pH with machine learning techniques found in lower stretches of river Ganges.

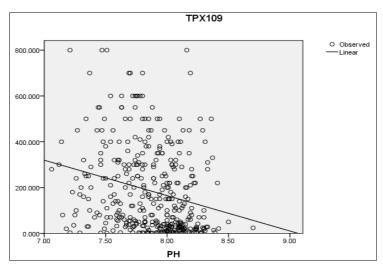



Fig 6: Aquatic microbial Entero-Bacteria relations negatively correlated with pH with machine learning techniques found in lower stretches of river Ganges

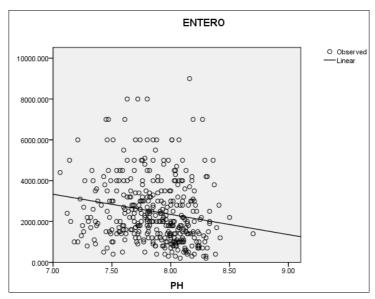



Fig 7: Aquatic microbial Platty Bacteria relations negatively correlated with pH with machine learning techniques found in lower stretches of river Ganges.

## Conclusion

This research communication exampled with (Fig 1 to Fig. 7) shows that microbe's occurance are pH sensitive. In realties to fish diseases author found that fisheries may remain diseases free in many herbal ecology where there is plenty of organic acids existed. Also humic acid and Fulvic acids causing a lowering in pH found fisheries diseases free. A higher pH in marine environment fisheries often remain diseases free. Ecotechnology are derived Machine learning techniques with igital parameters in controlling virus and microbes other digital parameters like CEC and TDS often controls growth and fecundity in fisheries and mankind may also be regulated with aquatic pH. Study also found that only Isoprene nano particle synthesised by aquatic plankton biomass can take preventive and controlling measure by cellular diffusion and environmental purification in such range of pH and beyond if any. We also concluded recently that Turbidity may be a very important environmental parameter out of many water-quality parameters, and can be studied digitally while on ground-truth collection or can be measured with satellite remote sensing data by their grey-values. Turbidity may be controlled by other environmental parameters namely, temperature, Cation

Exchange Capacity of colloids CEC, Total dissolved Solids TDS, aeration and a few others. Recently AI and Machine learning Techniques can be an error-less approach than old aged manual processes. Recent studies a few Digital rules as follows that in Isoprene Biochemistry in preventing, curing diseases caused by unicellular pathogens in Agriculture of resource conservation and ecology stability also The digital theories of isoprene nano-particle and other related in curing, preventing diseases caused by unicellular pathogens even in fisheries and allied sciences.. Digital-rules also said that Growth & Fecundity of any Fish are negatively correlated with TDS and CEC. Fecundity of any Fish may environmentally controlled and values are negatively correlated with the TDS and CEC. May the rules in Digital fisheries viz. growth and fecundity are negatively correlated with TDS and CEC and approximated Linier Models. Preventing and curing diseases with Hydrocarbon, Isoprene, and Chlorine nano-particles destroy unicellular pathogens of inland, marine environments and mankind Modern ecotechnology may benefit to every mankind. The wellknown fact is that any foreign-proteins namely virus and bacteria can be denatured with mild Ayuyrvedic acids or

Alkaloids. Ground-truth microbial counts and digital parameters of ecology can find relations viz. machine learning techniques, of departing hydrophilic viruses, microbes with hydrophobicity of hydrocarbons or else reactive Isoprene.. In earlier studies author found that hydrocarbon Isoprene the smallest unit of essential Fats, can be a non-protein enzyme can take extra engineering on inhibiting genomic-replications of microbes by reversibly forming Isoprene-phosphate. GC-MS detection of Isoprene or hydrocarbon derivatives can be possible and detection of turbidity, pH can be a controlling measures of microbes, quite ecotechnologically. Authors are running Ayurveda gardens with fascinating plant specieses namely Justasia spp and Citrus plants those are releasing plants acids, Isoprene etc can protect and prevent any viruses with Isoprene instant proofs. May be gene editing of of all evil viruses with Isoprene remains be pre historic and established since Ayurvedic era Modern digital-research of Chromatography, Distillations or digital electronics can find that Isoprene and few others when emitted by plants or algae can prevent viruses and with a fact that oldest prescription of Ayurveda may be the worthiest to the mankind. May all naturally gene-editing possible with Ayurveda science since pre-historic era and re-invented. Today Ayurveda science may be as advanced and authentic with perspective to gene editing or gene-therapy. In recent years we find whole world is full panicked with every word-goes starting with viruses, their all kind of mutants etc. However once we take very worthy Isoprene to Terpenoids from plants and Fatty bio-molecules etc. this may be God gifted bio-molecules that prevent and cure virus attack or even its mutants by damaging their genetic traits. Modern Ayurveda says any anomaly in mankind caused by viruses or its mutants can be cured with natural gene-editing plants i.e. Justicia spp, with stated Ayurveda science containing Isoprene, acting gene-editing enzyme, non conventional and non protein bio-molecule by forming isoprene phosphate reversibly, along with all the precursors of desiring genetic-base materials such as Purine and Pyrimidine obtainable from very popular Alkaloid biomolecules namely Vasicine, Vascineone and Quinazoline, respectively sourced from Justacia spp, or else simply fed them with Citrus spp or Switenia mahagony leaves all this containing Isoprene and hence animals fed gets escaped from any kind of virus diseases. All this Ayurvedic plants since pre-historic era and proven true Ultra natural all the mentioned biomolecules also obtainable at their respective temperature of vapour point (vp) from individual plant extracts. Whereas all the examples are given above with aquatic data of fisheries environments.

# Acknowledgements

First Author is grateful to publisher and to the scientific communities. First author is immensely thankful to the HODs of Fisheries Research Assessment and Informatics Division and the Director of ICAR-CIFRI, Barrackpore, Kolkata 700120, West Bengal, India for accomplishments. Necessary data supports are due to the scholars.

## References

- Debabrata Das, Prakriti Das. The Digital rules of Isoprene Biochemistry in preventing, curing diseases caused by unicellular pathogens. In 2<sup>nd</sup> International Web Conference on smart Agriculture for resource conservation and ecology stability, 2021.
- 2. Debabrata Das, Aranya Das, Prakriti Das, Santa Ana Das.

- The digital theories of isoprene nano-particle and other related in curing, preventing diseases caused by unicellular pathogens even in fisheries and allied sciences during and after the Covid era. Int J Fisheries and Aquatic Studies. 2021;9(6):227-229.
- Debabrata Das. Digital Rules say Growth & Fecundity of any Fish are negatively correlated with TDS and CEC. Proc. E-Book Abstract of SCSI India National Web Conference. Sustainable Soil and Water management for Biodiversity Conversation, food security & Climate Resilience, 2020 Dec 29-30.
- 4. Debabrata Das. Fecundity of any Fish may environmentally controlled and values are negatively correlated with the TDS and CEC. ISCA Webinar Book of Abstract. International Symposium on Coastal Agriculture: Transforming Coastal Zone for Sustainable Food become security 16-19<sup>th</sup> March 2021 Organized by ISCAR, Canning Town, West Bengal India, 2021.
- 5. Debabrata Das, Rajendranath Das. May the rules in Digital fisheries viz. growth and fecundity are negatively correlated with TDS and CEC and approximated Linier Models. ISCA Webinar Book of Abstract International Symposium on Coastal Agriculture: Transforming Coastal Zone for sustainable food and become security 16-19<sup>th</sup> March 2021 Organized by ISCAR, Canning Town, West Bengal. India, 2021.
- Debabrata Das, Aranya Das, Prakriti Das, Santa Ana Das. Preventing and curing diseases with Hydrocarbon, Isoprene, and Chlorine nano particles destroy unicellular pathogens of inland, marine environments and mankind. Int. J of Fisheries and Aquatic Studies. 2022;10(3):26-33.
- 7. Debabrata Das, Aranya Das. Ecotechnological relations between aquatic microbes & turbidity with machine learning techniques. International Journal of Fisheries and Aquatic Studies. 2022;10(3):101-105.
- 8. Debabrata Das, Prakriti Das, Aranya Das, Santa Ana Das. 2022. Lets ecotechnology to find non-existence of aquatic-microbes with machine learning techniques Int J. of Fisheries and Aquatic Studies. 2022;10 (3):119-123.