Susceptibility to oxidative damage in wild and cultured Brook Trouts (Salvelinus Fontinalis Mitchill, 1815)

T. Karataş and E.M. Kocaman

Abstract

The aim of this study was to determine susceptibility to oxidative damage of wild (WBT) and cultured brook trout (CBT) (Salvelinus fontinalis Mitchill, 1815). The average weights of fish were 90 g and 60 g for CBT and WBT, respectively. Fishes used in the present work were randomly selected from ponds and pool. Fifteen fish were considered for each group. CBT were fed with commercial feed including 48-52% crude protein twice a day whereas WBT were fed with natural foods. At end of experiment, the levels of MDA, HDL and PON/HDL in the serum samples obtained from CBT was observed higher than the one obtained from WBT. However, these differences were found statistically insignificant. Our results showed that size, partial starvation, feeding and sex of the animal, stress in same fish species may be reason for the change of PON activity, MDA and HDL levels.

Keywords: Malondialdehyde, Paraoxonase activity, High-density lipoprotein, brook trout

1. Introduction

Fish is one of the most important aquatic organisms and they are important protein source for human nutrition [1, 2]. Biochemical blood parameters reflect the physiological and health state of fish and they are an important tool that can be used as an effective and sensitive index to monitor physiological and pathological changes in fish [3]. Normal ranges for blood parameters in fish were evaluated by different researchers in fish physiology and pathology [4]. Paraoxonase (PON) is a serum enzyme closely associated with HDL particle containing apolipoprotein (apo) A1 that hydrolyzes organophosphate compounds such as oxidized phospholipids and lipid peroxides [5,6]. PON hydrolyzes several organophosphorus compounds used as insecticides, as well as nerve agents; it metabolizes toxic oxidized lipids associated with high density lipoprotein HDL [7]. Serum paraoxonase (PON) is an esterase (EC 3.1.8.1) synthesized by the liver. The enzyme is found to protect HDL against peroxidation. A protective role of paraoxonase has been suggested as well as an explanation of protective role of HDL against LDL oxidation [8].

Lipid peroxidation consisting by free radicals is the major mechanism of cell damage or destruction [9]. Free radicals found in mammalian tissues are occurred in physiological and pathological conditions. The excessive production of free radicals is an important factor in terms of the tissue damage [10]. Due to this excessively reactive in nature, ROS can attack almost all biomolecules including lipid membranes [11]. Lipid peroxides occur as a result the oxidation of PUFA in the membranes by a free radical chain reaction [12]. MDA is a lipid peroxidation product and it is the most frequently used as biomarker for assessing in vivo oxidative stress [13]. In the other words, MDA is a marker of oxidant/antioxidant balance. Increased MDA may be increased risk of developing several diseases. In both mammals and fish, insufficient ingestion of nutritional antioxidants can lead to a decrease in the ability to defend against to oxidative stress and some diseases [14].

HDL consisting of 50% protein, 30% phospholipid and 20% cholesterol is synthesized in the liver and small bowel wall [15]. The new synthesized HDL is released into the bloodstream collects cholesterol esters from other circulating lipoproteins and the cholesterol esters convert to spherical HDL mature. HDL enriched from cholesterol leaves cholesterol after turning to liver. HDL carries cholesterol from tissue to liver.
Therefore, the increase of HDL is in favor of the organism whereas the decrease in HDL levels is against the organism [14].

Brook trout is an important fish species with its commercial significance. There is no available information about whether there is any relation between HDL and serum paraoxonase in brook trouts. In this study, we compared to the levels of malondialdehyde (MDA), paraoxonase activity (PON) and high-density lipoprotein (HDL) of wild (WBT) and cultured (CBT) brook trout (Salvelinus fontinalis Mitchell, 1815) reared in same water conditions.

2. Materials and methods

2.1 Fish and blood serum

WBT and CBT (Salvelinus fontinalis Mitchell, 1815) reared in the same water conditions were obtained from the Aquaculture Faculty at Ataturk University in Erzurum (22 November 2011). The average weights of fish were 90 g and 60 g for CBT and WBT, respectively. Fish used in the present work were randomly selected from ponds and pools, and fifteen fish were considered for each group. CBTs were fed with commercial feed including (crude protein 45-52%, fat 17%, ash 10%, Gross energy 3648 kcal) crude protein twice a day whereas WBTs were fed with natural feeds. Handling time of fish was less than 1 min to minimize stress effects. To obtain blood samples, fish were quickly taken out from the water and held firmly on a bench with a cloth covering the head and blood samples were withdrawn from caudal vessels by a vacuum syringes and then samples were taken into anticoagulant tubes and were waited for 20 minutes clotting. Blood samples clothed were centrifuged at 3,000 rpm for 10 minutes. Samples were separated to serum. HDL concentration of the separated serum samples were analyzed by autoanalyzer Cobas C501 by using commercial kits [16].

2.2 Measurement of Malondialdehyde (MDA)

Serum MDA levels were obtained according to the method described by Karatas and Kocaman [14]. A mixture of 20% acetic acid, 8.1% sodium dodecyl and 0.9% thiobarbituric acid sulfate were added to the serum of 0.2 ml. Then, mixture was added distilled water to obtain total volume of 4 ml and was incubated for 1 hour at 95 °C. After incubation, the tubes were left to cool. Afterwards 1 ml of distilled water and 5 ml of nbutanol/pyridine (15:1, v/v) were added by mixing. The samples were centrifuged for 10 min at 4000 g. The supernatants were removed and absorbance was measured at 532 nm. Malondialdehyde level was measured as μmol/L.

2.3 Measurement of serum PON concentration

Tris-HCl acid buffer (pH: 8, 100 mM) containing 1 mM CaCl2 and 1 mM paraoxon was added to the serum of 10 μL to obtain 1 ml. Absorbance increase caused P-nitrophenol has been obtained at 412 nm for each subsequent 30 seconds at the ambient temperature of 25 °C. The amount of P-nitrophenol was calculated as 17000 M⁻¹ cm⁻¹ using the molar extinction coefficient (PH: 8). One unit paraoxonase activity constitutes one nmol p-nitrophenol per min. Paraoxonase activity, is given in U / mL [17] (Talas and Gulhan, 2013).

2.4 Measurement of serum PON activity

PON activity was calculated by reading the absorbance change per minute (ΔA/dk) resulting from p-nitrophenol product of the hydrolysis in 100 mMTris / HCl buffer (pH = 8) at 412 nm at 37 °C through 5 minutes. Molar absorption coefficient of p-nitrophenol is 17,600 for the current test conditions. The amount of enzyme constituted 1 nmol p-nitrophenol per minute was expressed as a unit [18].

3. Statistical Analysis

To evaluate statistically significant differences between group researches, LSD test was applied to the all groups. For this purpose, the 11.5 version of SPSS program was used (SPSS Inc, Chicago, USA). For the comparison of data, P<0.05 was considered statistically significant.

4. Results

The results obtained from the serum malondialdehyde, paraoxonase activity and HDL levels have been given in Table 1 for WBT and CBT fed by natural and commercial feeds (twice a day), respectively. The level of MDA in WBT was found to be 1.40, times higher than the one present in CBT, respectively. PON, HDL and PON/HDL levels in CBT were found to be 1.28, 1.20 and 1.06 times higher than the ones present in WBT. However, there was not significant difference between groups (p<0.05).

Table 1: Variations of MDA, PON, HDL and PON/HDL levels in CBT and WBT

<table>
<thead>
<tr>
<th></th>
<th>CBT</th>
<th>WBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA (μmol/L)</td>
<td>12.86±0.44</td>
<td>18.09±4.61</td>
</tr>
<tr>
<td>PON (U/ml)</td>
<td>17.8±1.1</td>
<td>13.9±2.1</td>
</tr>
<tr>
<td>HDL (mg/dl)</td>
<td>28.6±2.9</td>
<td>23.7±2.4</td>
</tr>
<tr>
<td>PON/HDL</td>
<td>0.62±0.68</td>
<td>0.58±0.52</td>
</tr>
</tbody>
</table>

Results were given as mean±SD and %. WBT, Wild brook trout; CBT, cultured brook trout; MDA, Malondialdehyde; PON, paraoxonase activity; HDL, high-density lipoprotein; PON/HDL, paraoxonase/high-density lipoprotein. %: rate of PON activity in HDL, and total HDL in the blood and total PON in the blood.

5. Discussion

Oxidized fats are contained lipid peroxide in tissues. Lipid peroxide lead to decomposition of the oxygen-containing radicals [13]. Decomposed free radicals attack to all cell components such as proteins, lipids and initiate oxidative stress [19, 20]. MDA is a sensitive indicator in terms of determination of damage in organs, cells and tissues depend on the increase in the lipid peroxidation [12] (Hata et al., 1986). We examined the levels of MDA, a metabolite derived from lipid peroxidation; this parameter was used as biomarker of pro-oxidant situations in mammals [21]. Based on MDA levels in the present, our results clearly showed that WBT were found to be 1.40 times higher than the one present in CBT. There were not any pathological cases or anomalies detected in groups (WBT and CBT). However, the feed intake and growth of WBT were slower than the ones of CBT in our study. This may lead to increase of MDA level. MDA was affected by many factors such as stress, source in feed, and nutrient antioxidants (A, D, E, K vitamins). These factors may lead to weakening of defense system against diseases. Available information concerning the influence of food in fish is limited. A recent study on sea bream (Sparus aurata) evaluated the influence of prolonged starvation on MDA levels, and a significant increase of this metabolite in liver has been reported [21] (Pascual et al., 2003). Partial food deprivation has been also reported to increase MDA levels in rainbow trout, Oncorhynchus mykiss [22], and sea bream, S. aurata [21].
PON activity protects phospholipids in HDL from further oxidation. This protection may be associated with hydrolyze of some oxidized phospholipids of paraoxonase [14]. In various trials, PON prevents oxidative stress by inhibiting oxidation of cell membrane lipids induced by ROS [21]. PON activity of fish is indicated as very low or close to zero [24]. Based on PON levels in the present, our results showed that the serum PON level in WBT was higher than in CBT. The levels of PON of Pacu (Piaractus mesopotamicus), Matrixnas (Brycon cephalus), Casudo (Hyphostomus punctatus), Dourados (Salminus brasiliensis), Rainbow trout (Oncorhyncus mykiss) and Albino rainbow trout were determined as 6.6, 1.50, 6.1, 37.3, 69.8 and 58.4 U/ml by Baston [25] and Karataş and Kocaman [14]. In this case, the serum PON may be important in reducing the adverse effects of MDA. Follya [24] reported that HDL has been related to the serum paraoxonase in pacu fish. In another study, Baston [25] reported that 95% ratio of PON/HDL in dourados was recovered in the HDL fraction. In this study, these ratios were 62–58% for CBT and WBT, respectively.

HDL, a multifunctional lipoprotein is responsible for the cholesterol transport and metabolism. It plays defensive role against diseases in carp and trout and in teleost fish [24]. In addition, HDL has important defensive function, maintaining invariantly high concentrations in the plasma even in diseased fish [14]. In the present study, the value of serum HDL in WBT was insignificantly lower than in CBT. Feed intake of CBT was higher than the one that WBT. Therefore, adequate feed intake or size of WBT may lead to decrease of HDL level. Leger [27] reported that values of HDL in fish are directly affected by factors like size, partial starvation, feeding and sex of the animal, stress.

In result, the difference in feeding and size of the fish (WBT and CBT) may be an important reason for the change in MDA, PON and HDL levels. The high level of serum PON and HDL both fish and animal may be important in terms of preventing the damage to the tissues and the cells. Further researches should be performed in order to investigate the association of PON with HDL and MDA.

6. Acknowledgements

The authors thank Agri Ibrahim Cecen University for financial support of the study (Project no: 2013/SYO-12.001) and Ataturk University, Faculty of Fisheries Inland water fish breeding and Research Center.

7. References


