Changes in growth performances, survival rate and water quality parameter of pond on different stocking density of Gulsha Tengra (*Mystus cavasius*) in a monoculture system

Md. Hafiz All Hosen, Rubaiya Pervin and Sheik Istiak Md. Shahriar

Abstract

This study highlighted the effect of different stocking density of Gulsha Tengra (*Mystus cavasius*) on its growth performance, survival as well as water quality parameters of the pond in a 4 months trial in a monoculture system. Changes in water quality and growth performance were analyzed considering three different stocking density such as 400 ind./decimal (T1); 500 ind./decimal (T2) and 600 ind./decimal (T3) with two replication of each using Complete Randomization Design (CRD). Water quality parameters were viz., temperature, dissolve oxygen (DO), pH and transparency were measured fortnightly during the study period. Results showed significant differences (*P*<0.05) between treatments. Temperature was relatively high with an apparent opposite trends of DO in T3 treatment. Moreover, it was observed that the highest length and weight was found in T1 treatment. In addition, better growth rate with maximum survivability was recorded in low stocking density. It might be concluded that comparatively lower stocking density of Gulsha Tengra could provide more production and also be suitable in order to maintain better water quality parameters in enclosed culture condition.

Keywords: Gulsha Tengra, growth performances, survival rate and water quality parameters

1. **Introduction**

Bangladesh is one of the advanced countries in aquaculture production as it secures 4th position in the world [7]. The annual production of fish from aquaculture was around 20.6 lakh MT in the year 2014-15 and it contributes about 55.93% of total fish production [9]. More than 50% of aquaculture production solely comes from farming of Indian major carp species, especially Rui (*Labeo rohita*), Catla (*Gibelion catla*) and Mirgal (*Cirrhinus cirrhosus*) while some Chinese carps like Silver carp (*Hypophthalmichthys molitrix*), Bighead carp (*Hypophthalmichthys nobilis*) and Grass carp (*Ctenopharyngodon idella*) [23]. Besides that culture of catfishes in commercial ponds are being popular now a days among farmers since it has high nutritional quality and market demand associated with high market price [13].

Gulsha Tengra (*Mystus cavasius*) which is also known as *Gangetic Mystus*, is a freshwater catfish species belongs to the family Bagridae, widely distributed in ponds, canals, beels, floodplains, streams and rivers of many South-Asian countries likely Bangladesh, India, Myanmar, Pakistan, Sri Lanka, Nepal and Thailand etc. [25, 26, 21, 33]. This fish is famous for its eury-omnivorous nature of food habit as it consumes a large variety of food items such as algae, zooplankton, insect larvae, small fish, eggs, worms and soft shelled organisms [12, 6]. In addition, Gulsha Tengra contains considerably high percentage of protein (13.81%) with low quantity of fat content (2.26%) and rich in calcium and phosphorus as well [13].

Gulsha Tengra has been addressed as threatened species by IUCN and some researchers in Bangladesh [24, 14, 1] because the catch of this indigenous fish from open water bodies is being dwindled gradually; might be due to increased fishing pressure to meet up the high market demand. Over exploitation, habitat destruction and ecological changes are also the causes of their low catch from inland water bodies as well. Therefore, aquaculture of Gulsha Tengra in pond should be practiced scientifically in order to protect and conserve this species.

Though several researches have already been conducted in Bangladesh and abroad regarding stocking density of catfishes such as the effect of stocking density on growth and survivability of juvenile catfish [22, 28], stocking density optimization [29], different catfishes stocking ratios in...
2. Materials and Methods

2.1 Experimental design
The study was carried out for a period of five months from 1st March to 30th July, 2016 in nine different ponds located at Kachubari, Thakurgaon district, Bangladesh. The selected ponds were about 50 decimal in size and around six feet water depth was maintained throughout the study period. One month old Gulsha Tengra about 3 cm long and 2 g in weight was stocked in these experimental ponds. Three different treatments viz., 500 ind./decimal (T1), 600 ind./decimal (T2) and 700 ind./decimal (T3) were stocked with three replicates of each treatment.

2.2 Experiment procedure
The ponds were repeatedly netted and finally treated with rotenone at 4.5 kg/ha to eradicate unwanted fish species. Then, the ponds were treated with dolomite at 200 kg/ha and organic fertilizers (cattle dung 1 ton/ha) were applied to create a suitable environment prior to stocking. The stocked fish were fed at morning and afternoon daily at the rate of 5% body weight with commercial pellet feed containing 30% crude protein supplied by Nourish Poultry and Hatchery Co. Ltd., Bangladesh.

2.3 Water quality parameters
Four physico-chemical parameters of pond water were recorded viz., temperature, dissolved oxygen, pH and transparency were measured with an interval of 7 days during the whole period of study. In present study, temperature and dissolved oxygen were measured by using mercury-in-glass thermometer and a dissolved oxygen meter (YSI model 58, USA), respectively. The water pH was measured by using portable pH meter (CORNING model 445) and the transparency of pond water was determined using Secchi disc.

Table 1: Variations in water quality parameters of pond water under different treatments

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Month</th>
<th>Treatment T1 (500/decimal)</th>
<th>Treatment T2 (600/decimal)</th>
<th>Treatment T3 (700/decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>April</td>
<td>28.00±0.25<sup>a</sup></td>
<td>28.00±0.20<sup>a</sup></td>
<td>28.05±0.15<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>28.60±0.10<sup>a</sup></td>
<td>28.65±0.15<sup>a</sup></td>
<td>28.75±0.10<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>22.40±0.15<sup>b</sup></td>
<td>22.50±0.20<sup>b</sup></td>
<td>22.65±0.15<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>18.60±0.12<sup>c</sup></td>
<td>18.75±0.14<sup>c</sup></td>
<td>18.85±0.10<sup>c</sup></td>
</tr>
<tr>
<td>pH</td>
<td>April</td>
<td>8.20±0.05<sup>a</sup></td>
<td>8.20±0.10<sup>a</sup></td>
<td>8.15±0.20<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>8.20±0.15<sup>b</sup></td>
<td>8.15±0.10<sup>b</sup></td>
<td>8.10±0.15<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>7.90±0.10<sup>c</sup></td>
<td>7.75±0.10<sup>c</sup></td>
<td>7.70±0.15<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>7.20±0.10<sup>c</sup></td>
<td>7.05±0.15<sup>c</sup></td>
<td>6.92±0.10<sup>c</sup></td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>April</td>
<td>6.90±0.05<sup>a</sup></td>
<td>6.65±0.10<sup>a</sup></td>
<td>6.15±0.20<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>6.50±0.15<sup>b</sup></td>
<td>6.15±0.10<sup>b</sup></td>
<td>5.65±0.15<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>7.00±0.10<sup>c</sup></td>
<td>6.55±0.10<sup>c</sup></td>
<td>6.00±0.15<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>7.80±0.10<sup>c</sup></td>
<td>7.15±0.15<sup>c</sup></td>
<td>6.50±0.05<sup>c</sup></td>
</tr>
<tr>
<td>Transparency</td>
<td>April</td>
<td>29.40±0.05<sup>b</sup></td>
<td>29.45±0.10<sup>b</sup></td>
<td>29.60±0.20<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>28.00±0.15<sup>c</sup></td>
<td>28.15±0.10<sup>c</sup></td>
<td>28.25±0.15<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>30.40±0.10<sup>c</sup></td>
<td>30.65±0.10<sup>c</sup></td>
<td>30.85±0.15<sup>c</sup></td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>34.10±0.10<sup>c</sup></td>
<td>34.55±0.15<sup>c</sup></td>
<td>34.95±0.05<sup>c</sup></td>
</tr>
</tbody>
</table>

^aMean values in column with different letters are significantly different (P<0.05).
Different stocking density of Gulsha Tengra has exerted significant effect on temperature, pH, dissolved oxygen and transparency of pond water. The highest mean temperature (28.75 °C) was recorded in T3 at the end of the May; followed by 28.65 °C in T2 while the lowest temperature (28.60°C) was recorded in T1 (Table 1). Results exhibited that the effect of stocking density was significant (P<0.05) in respect of temperature. However, no significant difference of temperature was observed in the month of April and May. Significant variation (P<0.05) was observed among other water quality parameter as well. The highest DO content (7.80 ppm) in T1 and the lowest (6.50 ppm) in T3 were recorded in July. In the same month, the highest and the lowest recorded pH were 7.20 (T1) and 6.92 (T3) respectively (Table 1). The highest transparency was 34.95 cm in T3 treatment, whereas the lowest transparency was 34.10 cm in T1 treatment in the month of July (Table 1).

This study highlighted the effect of different stocking density of Gulsha Tengra (Mystus cavasius) on its growth performance, survival as well as water quality parameters of pond in a 4 months trial in a monoculture system. In the month of May, relatively high water temperature was observed in higher stocking density ponds (Table 1). Greater biomass of fishes which results overcrowding in association with enhanced metabolism and activity might be the reasons of higher temperature of these ponds in this summer month.

Begum et al. 2008 [1] was also drawn similar conclusion on temperature regarding higher stocking density of another catfish named Mystus galio. In general, higher temperature limits the solubility of dissolved oxygen in culture system i.e. dissolved oxygen decreases as the temperature increases. Significantly, a reverse trend of dissolved oxygen in relation to temperature was observed throughout this study (Table 1). However, DO was found lower with the increase of stocking density. This result was comparable with Oguguah et al. 2011 [23] and Kohinoor et al. 2012 [17], According to Tucker (1994) [33]; dissolve oxygen in a higher stocking density pond might be responsible for poor heath, lower growth and higher mortality rate. Again, Brazil and Wolters (2002) [4] reported the decreased growth of channel catfish (Ictalurus punctatus) larvae due to the presence of low level of dissolved oxygen. Lowest value of pH was recorded in T3 (Table 1). Overcrowding is also responsible for producing higher amount of CO2 which ultimately reduces the water DO as well as pH. Expect that comparatively higher pH of water indicated that the water was productive. Several researchers found higher pH under different stocking density of catfishes like; Nwipie et al. 2015 [22]; Kohinoor et al. 2012 [17]; Oguguah et al. 2011 [23]; Kohinoor et al. 2004 [18]. Transparency of those ponds varied with the change of seasons such as highest transparency was recorded in monsoon period during heavy rain. Moreover, better water qualities were observed in lower stocking density (500 ind./decimal) compared to others.

3.2 Growth parameters

3.2.1 Total length

The total length of gula tengra was varied as the stocking density changes. The effect of stocking densities on the total length of Gulsha Tengra is presented in Fig 1. The results revealed that stocking density had significant (p<0.05) effect on the total length of this fish. The maximum length (16.51 cm) and minimum length (14.10 cm) were also recorded in T1 and T3 respectively. It was observed that the highest total length for each sampling was found in T1 followed by T2 and T3.

3.2.2 Total weight

The effect of stocking density was remained significant in response of final weight of Gulsha Tengra which is shown in Fig 2. At the end of the experiment, the highest final weight (33.50 g) was observed in T1, followed by T2 (26.92 g) and the lowest final weight (21.11 g) was obtained in T3(Fig 2).

3.2.3 Specific growth rate

Specific growth rate (SGR) of Gulsha Tengra fish is presented in Fig 3. The specific growth rate varied from 5.50% to 0.76%, 5.10% to 0.47% and 4.80% to 0.22% in T1, T2 and T3, respectively. The specific growth rate was also varied significantly according to different stocking density and it was always higher in lowest stocking density (T1) and followed by T2 and T3.
Proper growth and survivability of aquatic organisms is dependent on different stocking density [15]. M’balaka et al., 2012 [20] also reported that growth parameters and survival rate is adversely affected by the higher stocking density. However, increased stocking density deteriorates water quality which ultimately reduces the growth, disease resistance and survivability of culture organisms [19]. [11]. According to Tucker 1994 [33], the growth and survivability of fish is negatively affected by the increased stocking density. In this study, the total length and individual weight gain of Gulsha Tengra decreased as the stocking density increased (Fig 1 and Fig 2). Engle (2001) [10] mentioned that highest total length was observed at lower stocking density. Aminur et al., (2015) [2] also found noteworthy effect of stocking density on the length of Catfish (Sperata aor). Gross production of culture species increased with the increase of stocking density while the mean weight of individual fish decreases [33]. Although some fish species can tolerate extreme crowding for a long time where food completion could limit their growth and results poor weight gains [30]. Possible reasons of higher body weight in lower stocking density might be due to less competition for food and space compared to that of in higher stocking density. Similar findings were reported on catfish by Nwipie et al., 2015 [22] and Kohinoor et al., 2012 [17]. Furthermore, the total length, weight, specific growth rate and maximum survival rate (95%) was greatest in lower stocking density. Rahman et al., 2013 [24] stated that better water quality, higher growth and much production was found at the stocking density of about 800 fry/decimal. The maximum length of Gulsha Tengra was reported to be of 40 cm [31].

3.2.4 Survival rate

It was found that the effect of stocking density on survival rate was significant. Survival rate of Gulsha Tengra in different stocking density is shown in Table 2. However, the highest survival rate (95.00%) was observed in T1 followed by T2 (94.00%) and the lowest survival rate (93.33%) was recorded in T3 at the end of experiment (Table 2).

![Graph showing changes of specific growth rate of Gulsha Tengra in three different treatments](image)

Table 2: Survival rate of Gulsha Tengra in three different treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (500/decimal)</td>
<td>95.00%</td>
</tr>
<tr>
<td>T2 (600/decimal)</td>
<td>94.00%</td>
</tr>
<tr>
<td>T3 (700/decimal)</td>
<td>93.33%</td>
</tr>
</tbody>
</table>

In this experiment, maximum length (16.51 cm) and minimum length (14.10 cm) were also recorded in T1 and T3 treatment respectively. Culture period could be extended to get greater size of this catfish species. Moreover, under higher stocking density, this fish species suffered stress because of aggressive feeding competition which ultimately resulting in growth retardation. Finally, it can suggest that relatively lower stocking density may be helpful for maintaining better quality of pond water and highest individual weight gain as well as more profit could be earned from culturing this Gulsha Tengra in a mono culture system.

4. Conclusion

In this experiment, maximum length (16.51 cm) and minimum length (14.10 cm) were also recorded in T1 and T3 treatment respectively. Culture period could be extended to get greater size of this catfish species. Moreover, under higher stocking density, this fish species suffered stress because of aggressive feeding competition which ultimately resulting in growth retardation. Finally, it can suggest that relatively lower stocking density may be helpful for maintaining better quality of pond water and highest individual weight gain as well as more profit could be earned from culturing this Gulsha Tengra in a mono culture system.

5. References

8. Ferdoushi Z, Haque F. Effect of different stocking density of Pangasid Catfish (Pangasius shargy pus) and Silver Carp (Hypophthalmichys molitrix) on better water quality maintenance in Catfish farming. Pakistan Journal of Biological Science. 2006; 9(9):1732-1737.