Implications of heavy infestation of *Lernaea cyprinacea* (Crustacea: Copepoda) of Silver carp, *Hypophthalmichthys molitrix* at Manzala area, with trial for control using Trichlorfon

Mohamad E Nofal, Viola H Zaki and Abdulla A El-Shebly

Abstract

An outbreak of heavy infestation of Crustacean parasite, *Lernaea* sp. has occurred autumn 2015 with heavy losses of cultured fish in Manzala area, Egypt. In this study, parasitological examination was done on about five hundred (500) earthen pond cultured Silver carp fingerlings, with body weight averaged (2-3 g), from intensive culture at Lake Manzala, for surveillance and detection of the infested *Lernaea* sp. Clinical signs, postmortem (pm), and histopathological findings were determined. Also, the infestation rate was evaluated in relation to the physico-chemical water quality parameters. Furthermore, a trial of treatment using Trichlorfon 80% powder in a dose rate of 0.5 ppm three successive times with 10 days interval was investigated. The results revealed that (320) specimens were found to be infested with *Lernaea cyprinacea*, about (64%) of the total examined fish. Infested fish were off-food, restlessness, anemic, rubbing themselves against hard objects, accumulated at the water inlet, abnormal swimming and severe respiratory manifestation. Additionally, the infested *L. cyprinacea* was seen by naked eye remain attached to the body, fins and gills, with hemorrhagic ulcers has a button shape with elevated border were found at the point of attachment. There is no any postmortem examination. The results of water quality parameter revealed increased levels of Nitrite (0.2ppm), total ammonia (0.15ppm), H₂S (0.2 ppm), dissolved oxygen (7 mg/l) and with alkaline pH. The results also showed reduction in fish mortalities with no any detectable Lernea sp. on fish surface. It can be concluded that the infestation rate of *Lerneosis* was elevated with poor water quality and Trichlorfon can effectively eradicate *L. cyprinidae* from the infested fish.

Keywords: Lernaea cyprinacea, Silver carp, Lake Manzala, Trichlorfon

1. Introduction

Parasitic diseases constitute about 80% of diseases affecting warm water fish in Egypt (Eissa, 2002) [13], that mainly affect the fish health, growth and survivability (Barson and Marshall, 2003) [8]. *Lernaea* includes 70 species of parasites that affecting many aquatic animal species (McAllister et al., 2011) [25]. *L. cyprinacea* “Anchor worm” is an important crustacean parasite of freshwater fish that has a wide geographic range (Hoffman, 1999 & Silva-Souza et al., 2003) [17, 37]. Various *Lernaea* sp. parasitize on freshwater fishes and have worldwide distribution; the adult parasites are particularly harmful to young fish because of their relatively large size and mode of attachment and feeding which lead to secondary bacterial infections when it leaves the host (Piasecki et al., 2004) [29]. *Lernaea* sp. have 9 stages in the life cycle, including three free-living naupliar stages, five copepodid stages, and one adult stage, a male and female adult’s mate on the fish host, copulation occurs during the fourth copepodid stage, when the copulation was occurred the male’s presumably dying while the females metamorphose and insert the anterior region of the body into the host tissue and then produce eggs (Nagasawa et al., 2007) [27]. Only the adult female lernaeids are parasitic, whereas the males and immature forms of both sexes are free living. It is found on the tegument, gills, and fins and around the eyes and the buccal cavity of the fish host. The parasite has a worm-like body, with chitin growths at the anterior part of the body, through which it attaches to the host body (Yashouv, 1959) [38].

L. cyprinacea is capable of massive attacking, with high pathogenicity and mortality, mainly during the summer season. Besides the effects of penetration, hemorrhages and ulcerations are
also caused (Carnevia and Speranza, 2003) [11]. The most dangerous consequence of an intensive attack results in blood loss, increase of monocytes, secondary infections, intense lymphocytopenia and neutrophilia (Silva-Souza et al., 2000) [30]. The adults of *L. cyprinacea* leave large holes with round openings in the muscle and skin allow the entrance of secondary microbial infections causing death of the fish (Amina El-Mansy, 2009) [3]. The incidence of disease problems especially in intensive system fish farms is due to overcrowding and/or deteriorating water quality such as unsuitable water temperature, and pH and free ammonia concentrations (Kugel et al., 1990) [22]. High temperature can contribute positively in fast development of copepod, and the parasite intensity was increased with mean temperatures of 19 °C, suggesting that temperature only is not a major factor in the increase in parasite intensity (Barson et al., 2008) [9]. Highest prevalence of the parasite in the late winter December to April (water temperature 13-23°C) and low during the summer months (Iqbal et al., 2012) [19], the peak season for the parasite occur in October to December (hot, wet season) (Barson et al., 2008) [9]. The organophosphate insecticide Trichlorfon (Kashara, 1962) [21], Formalin (Putz and Bowen, 1964) [31], Lexone (Gopalkrishan, 1964) [14] and Benzene Hexachloride (Hoffman and Meyer, 1974) [18] were listed as effective chemicals for *L. cyprinacea* control. Our study aimed, therefore, for covering the following points; 1) determination of the relationship between the infestation of *L. cyprinacea* of Silver carp and the water quality parameters of Manzala area, 2) Evaluation of Trichlorfon for controlling their infestation.

2. Material and Methods

2.1 Fish Specimens

A total number of 500 fingerlings of Silver carp, *Hypophthalmichthys molitrix*, with body weight ranged (2-3 g), were collected a live from private fish farm at Manzala area, November 2015, during an outbreak of *Lernaea* infestation. All specimens were transported immediately on ice bag to the laboratory parasitology, department of parasitology, Faculty of Veterinary medicine, Mansoura University.

2.2 Clinical examination

Clinical examination was performed (Austin and Austin, 1987) [5], where fish were immediately examined for any external parasitological manifestation, skin darkening, presence of any cloudiness, discoloration, paleness, congestion, detached scales or fin rot, hemorrhage, redness and ulcers. Also the examination for exophthalmia or cloudiness and the abdomen was also examined for enlargement. Post mortem examination (Amlacher, 1970) [4], where fish placed on right side and the left side was disinfect by 70% ethyl alcohol. The first cut was made in front of anus through the abdominal wall; the second cut was made perpendicular to the first directly behind to the gill cover, the third cut was made from anus to the head region parallel to the lateral line. The abdominal wall was left by forceps and the internal organs become visible and exposed for post mortem findings.

2.3 Parasitological examination

Parasitological examination of the infested Silver carp was done, whereas, the crustaceans were collected gently by using forceps on a slides, fixed by 3% formalin preserved in 70% alcohol, they are not stained but cleared in lactic phenol then mounted in polyvol (Refaat et al., 2000) [33].

2.4 Histopathological examination

For histopathological examination, normal and infested fish tissues were obtained from the site of attachment and immediately fixed in alcoholic Bouin's solution for 24 hrs. These specimens were dehydrated in ascending concentrations of ethyl alcohol, cleared in Xylol and embedded in paraffin wax. Vertical sections were cut at 5 to 7 microns, and stained with Harri's Haematoxylin and subsequently counter stained with eosin. Finally, the slides were microscopically examined and photographed using camera mounted on light microscope and described (Carleton et al., 1967) [10].

2.5 Physico-chemical examination of water samples

Water samples were collected during the outbreak, from under the water surface, in clean and dark brown coppered glass bottle. Water temperature was measured in location by using ordinary thermometer (Coche et al., 1998) [12]. Other parameters as dissolved oxygen (D.O) (measured by a dissolved oxygen meter), percent of water salinity (measured by a Salinometer), pH values (measured by a pH meter), and phosphorus, Nitrite, Nitrate, Hardness, alkalinity, Turbidity, water transparency, Iron, Copper and Hydrogen disulphide were measured (APHA, 1992) [5].

2.6 Field trial treatment using Trichlorfon® for control

Organophosphorous compound, Trichlorfon 80% powder (ACMA Company) at a dose rate 0.5 g / m³ of pond water was evaluated. Reduce the level of water column about 40 cm. After calculation of the amount of powder required, each 0.5 kg of powder is dissolved in about 20 Litters of water and spread over the surface of pond water in different parts of the pond at the same direction of wind, after 3 days from treatment open the water supply again until reach the normal water level after that begin to increase the water drainage to change the water of the pond also begin to feed the fish again according to their body weight. Examine treated fish for the presence of the parasite and determined the percentage of the parasite remain alive. Repeat the same previous treatment after 10 days with the same previous precautions for about 2 weeks after the first one and take a sample of fish after treatment for parasitological examination.

3. Results and Discussion

3.1 Clinical examination

The results revealed that (320) specimens were found to be infested with *Lernaea cyprinacea*, about (64%) of the total examined fish. The infested fish were off-food, restlessness, anemic, rubbing themselves against hard objects, accumulated at the water inlet, abnormal swimming and severe respiratory manifestation. This result was agreed with Nagasawa et al. (2007) [27]. Additionally, the infested *L. cyprinacea* was seen by naked eye remain attached to the body (Plate 1), fins and gills, with hemorrhagic ulcers has a button shape with elevated border were found at the point of attachment. There is no any postmortem examination. It was demonstrated that the attachment point was often accompanied with distinct lesion occasionally inflamed and hemorrhagic with swollen margins, focal distribution along body surface (Carnevia and...
The infestation of *L. cyprinacea* was mainly focused in the ventral abdominal region. This was previously mentioned as the abdomen and ventral side of the body of the fish is the most common site of attachment of *Lernaea* sp. *L. cyprinicae* was founded embedded in the dorsal musculature, abdominal region and the eye, by chitin portion (Yashouv, 1959) [38]. It has definite affinity for abdomen and at the base of fins. These sites offer more protection in water and further these may be more easily penetrated by the parasite, *L. cyprinacea* prefers that location which offers greater protection against water current (Medeiros and Maltchik, 1999) [26].

High seasonal prevalence of *L. cyprinacea* infestation of Silver carp was in autumn; this was agreed with the previous results of several reports (Medeiros and Maltchik, 1999; Hanna, 2001; Awad, 2007; Lazar, 2009 and Saleh et al., 2010) [26, 16, 7, 23, 35].

The infestation rate of *H. molitrix* with *L. cyprinacea* was about 64%, this result were agree with Barson et al. (2008) [9] who reported that the greatest peak season for the parasite occurred in October to December (hot and wet season) also nearly similar with the results obtained by Raissey et al. (2013) [32] who recorded that the total infestation of different carp species was 69.4% and the highest seasonal prevalence of *Lernaea cyprinacea* was recorded in spring, summer, autumn and lowest prevalence occur in winter. Additionally, this result was in disagreement with Iqbal et al. (2012) [19] who reported that the highest prevalence of the parasite in the late winter December to April (water temperature 13-23°C) and low during the summer months, so there was appositive correlation between temperature and spreading of *L. cyprinacea*.

These results may be attributed to high temperature contribute to fast development of copepod, parasite intensity increased with mean temperatures19°C (Barson et al., 2008) [9]. Since the life cycle is temperature dependent, prevalence and intensity decreases with low temperature in winter (Mancini, 2006 & Rodriguez et al., 2008) [24, 34] who reported that the prevalence of parasite increase with the increase in temperature with summer season, the life cycle of most species of *Lernaea* is completed in 100 days at 14 °C and in 7-13 days at 28 °C but the optimum temperature is between 23 °C and 30 °C.

3.2 Histopathological findings

Plate 2: Histopathological findings of tissues of naturally infested Silver carp with *L. cyprinacea* showed; Lernaea with their thick wall deeply embedded in the eye with severe edema and necrosis in surrounding tissue (Photo 3), Lernae with their thick wall embedded in the eye with mild inflammatory infiltrates around it (Photo 4) (X400, H&E); extensive edema and marked aggregations of RBCS and haemopiotic cells (Photo 5), and extensive edema, distortion in cartilaginous tissue and marked aggregations of RBCS and haemopiotic cells (Photo 6) (H&E, 100X)

The results of the histopathological alterations of *L. cyprinacea* in Silver carp were nearly agree with Joy and Jones (1973) [20] who reported that infestation was observed accompanied by an inflammatory response characterized by an extensive proliferation of fibrous connective tissue elements, wherein, both the dermis and musculature of the host were involved, distortion of cartilaginous tissues around the associated with marked aggregation of RBCs and haemopiotic cells. Due to its high pathogenicity which was achieved from highly destruction of tissues and muscles which leading to penetration, hemorrhages, and ulcerations results in blood loss, increase of monocytes, secondary infections, intense lymphocytopenia and neutrophilia (Silva-Souza et al., 2000 & Piasecki et al., 2004) [16, 29]. The most dangerous consequence of an intensive attack results in blood loss, increase of monocytes, secondary infections, intense lymphocytopenia and neutrophilia (Silva-Souza et al., 2000) [36]. The adults of *L. cyprinacea* leave large holes with round openings in the muscle and skin allow the entrance of secondary microbial infections causing death of the fish (Amina El-Mansy, 2009) [3].
3.3 Results of physico-chemical properties of water at Manzala area

<table>
<thead>
<tr>
<th>locality</th>
<th>DOmg/l</th>
<th>pH</th>
<th>Salinity g/l</th>
<th>Po4mg/l</th>
<th>No3 ppm</th>
<th>N02 ppm</th>
<th>Ammonia ppm</th>
<th>NH3 ppm</th>
<th>SO4 ppm</th>
<th>CU3+ (Fe2+,Fe3+)</th>
<th>Fe</th>
<th>H2S+ Mg/l</th>
<th>Temp Cº</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadous</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1.4</td>
<td>0.2</td>
<td>0.02</td>
<td>0.0001</td>
<td>traces</td>
<td>0.00</td>
<td>0.16</td>
<td>0.01</td>
<td>22</td>
</tr>
<tr>
<td>Private farms</td>
<td>7</td>
<td>7.5</td>
<td>1</td>
<td>2.21</td>
<td>1.7</td>
<td>0.2</td>
<td>0.15</td>
<td>0.002</td>
<td>traces</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 2: The water quality parameters (Alkalinity, Hardness and Transparency) of 6 private farms.

The results of water quality parameters were shown in Table 1 & 2 revealed elevation of the levels of Nitrite (0.2ppm) in private fish farm and Hadous drainage, total ammonia (0.15ppm), level of H2S (0.2 ppm), dissolved oxygen (7 mg/L) and with alkaline pH, but the other parameters were within the permissible limits, also there are beginning of decreasing of water temperature about 16°C – 18 °C in autumn season.

The risk of parasite pathogenicity depends on the affected organ, parasitism intensity, environmental conditions and concomitant infections, among other factors (Plaut et al., 2010) [30].

The dissolved oxygen level is about 7mg/l which is suitable for the proliferation of L. cyprinaceae also host densities in the pond is very high (about 3 million fry / 2 Fedan) which encourage the appearance of outbreak this result agree with the (Barson et al., 2008) [9].

3.4 Results of the field trial treatment of Lernaea

Our results concluded that the infestation rate of Lerneosis was elevated with poor water quality and Trichlorfon can effectively eradicate L. cyprinaceae from the infested fish. These results were agreed with Kashara (1962) [21].

The results were not in concordance with several reports; several authors demonstrate several chemical for the control of L. cyprinicae (Putz and Bowen, 1964) [31], Benzene hexachloride (Hoffman and Mayer, 1974) [14], and Potassium permanganate as dipping at 0.0 25 mg/l for 30 seconds in Lerneosis organ, parasitism intensity, environmental conditions and The risk of parasite pathogenicity depends on the affected organ, parasitism intensity, environmental conditions and concomitant infections, among other factors. The water quality parameters were shown in Table 1.

The results of water quality parameters were shown in Table 1 & 2 revealed elevation of the levels of Nitrite (0.2ppm) in private fish farm and Hadous drainage, total ammonia (0.15ppm), level of H2S (0.2 ppm), dissolved oxygen (7 mg/L) and with alkaline pH, but the other parameters were within the permissible limits, also there are beginning of decreasing of water temperature about 16°C – 18 °C in autumn season.

The risk of parasite pathogenicity depends on the affected organ, parasitism intensity, environmental conditions and concomitant infections, among other factors (Plaut et al., 2010) [30].

The dissolved oxygen level is about 7mg/l which is suitable for the proliferation of L. cyprinaceae also host densities in the pond is very high (about 3 million fry / 2 Fedan) which encourage the appearance of outbreak this result agree with the (Barson et al., 2008) [9].

3.4 Results of the field trial treatment of Lernaea

Our results concluded that the infestation rate of Lerneosis was elevated with poor water quality and Trichlorfon can effectively eradicate L. cyprinaceae from the infested fish. These results were agreed with Kashara (1962) [21].

The results were not in concordance with several reports; several authors demonstrate several chemical for the control of L. cyprinicae as Formalin (Putz and Bowen, 1964) [31], Benzene hexachloride (Hoffman and Mayer, 1974) [14], and Potassium permanganate as dipping at 0.0 25 mg/l for 30 seconds in Lerneosis (Gratzek, 1988; Amer and Saleh, 1990; Noga, 1996; Zaki, 1999 and Abd El-Moula, 2001) [15, 35, 28, 39, 1].

4. References
20. Joy JE, Jones LP. Observations on the inflammatory...
response within the dermis of a white bass, Morone chrysops (Rafinesque), infected with Lernaea cruciata (Copepoda: Caligidea). J Fish Biol. 1973; 5:21-23.

