Indigenous technical knowledge in aquaculture sector: A literature review

Barlaya Gangadhar, Narasimhan Sridhar, Kannur Hemaprasanth, Magadi Raghunath, Pallipuram Jayasankar

Abstract
A review of literature was conducted to bring together information available on the indigenous practices followed by aqua farmers in various parts of the world. The information was grouped under the different steps of aquaculture starting from site selection for pond construction to fish health management. In addition, aquaculture practices based on indigenous knowledge like the periphyton-based aquaculture and various integrations of aquaculture are discussed.

Keywords: Aquaculture, Traditional practice, Fish breeding, Fish feeding, Integrated aquaculture

1. Introduction
Aquaculture remained as the fastest-growing food production sector in the last decade. Asia has been the center of aquaculture production for decades and currently, more than 90 percent of the total aquaculture production comes from Asian countries, China being the biggest producer in the world [1]. Interestingly, more than 70 percent of the total aquaculture production comes from small-scale farmers, who are also the major contributors of small-scale innovations and adaptations of aquaculture technologies. In many countries of the world, the adaptation of indigenous technologies has resulted in the development of sustainable and environmentally friendly aquaculture practices and hence helped the farmers to increase aquaculture production during the past decade [2, 3]. In this paper, we have attempted to enlist some of the indigenous knowledge practiced by fish farmers.

2. Methodology
The topic of the review was searched in Google database with different key words related to the subject and with the literature available with us. Personal contacts were also made with experts to collect information. The experiences gained by the first author during interaction with farming community as a part of extension service were also included. The information thus received was utilized for writing this article.

3. Results and discussion
3.1. ITKs in aquaculture practice
Aquaculture is the controlled production, propagation and rearing of aquatic organisms of highly economic value in a controlled environment such as ponds, channels and enclosures, using a higher density of cultured aquatic organisms than normally found in nature. Many rural farmers have applied indigenous knowledge in various stages of aquaculture in order to meet their livelihood necessities.

3.1.1. Pond construction and maintenance
i. Site selection: The fish farmers of Assam hill district are reported to have selected low-lying areas near the home for fish pond. These ponds can be used as multipurpose ponds for bathing, cloth and utensil washing in addition to fish culture [4]. They preferred to construct embankment ponds to the dugout ponds considering economy.

ii. Soil quality: In order to test the suitability of soil in terms of water retention, a mud ball is prepared from the soil where the pond is to be constructed. If the ball does not break, the soil is considered to have enough water holding capacity, hence suitable for pond construction (Saha and De, unpublished).
iii. **Outlet:** Farmers of Assam hill district used hollow bamboo fitted at a certain height from the bottom as outlet pipes. The end of the bamboo facing the ponds is blocked with stone and clay soil [4].

iv. **Protection of pond dyke:** During pond construction, the top of the pond is made wider than the bottom so that it can better withstand the force of water (Saha and De, unpublished). In places experiencing heavy rainfall, most dykes are prone to erosion and damage. Farmers plant plantation crops like coconut, papaya or vegetable crops with creeping vine like cucumber, gherkin etc. or turf with fodder grass. In Manipur, farmers use pond dykes for *Colocasia* plantation at 3000 nos. ha⁻¹, which is used as a vegetable in many parts of India [5].

3.1.2. Fish breeding and seed transportation

i. **Breeding:** Knowledge on dry and wet bundh systems of fish breeding and spawn production has been recorded from farmers (Saha and De, unpublished). Breeding in bundh including Bangla bundh with hormonal injection is a very cheap and effective method practiced by the farmers in many parts of West Bengal. These bundhs are most economical and very much tuned to the environment.

Farmers in West Bengal were reported to use proper doses of the extract of water-immersed catechu (*Acacia catechu*) and myrobalan (*Myrobalus indica*) nut in hatching pool, to make the eggshell hard [6]. This is known to help in shell hardening and prevent immature release of hatchlings, enabling higher hatching rates.

In Tamil Nadu, the practice of covering the rostrum of brood stock of freshwater prawn with plastic tube has been reported (TNAU). This is done to avoid damage of packing material during transport.

TNAU also recorded that some fish breeders use banana leaves for deposition of eggs and teak leaves to maintain acidic pH in the ornamental fish tanks during breeding egg layers and place carrot/potato slices and banana peels in ornamental fish larval rearing tanks to enhance the formation of live feed Infusorians.

Farmers in Lalmonirhat, north-west Bangladesh, frequently grind up the intestines of livestock as feed. Other food sources include cow dung, poultry offal and chopped dead poultry birds to the farmers are reported to feed partially fermented maize, using gunny bags (Saha and De, unpublished). Many farmers in Bangladesh were found to use mustard, the red powdery coating of rice under the husk as feed. Other food sources include cow dung, poultry waste, choker (the remains of wheat grains) obtained after the extraction of aata and oil cake [12]. Chowdhury [16] had observed that farmers in Lalonirhat, north-west Bangladesh, frequently grind up the intestines of livestock and feed it to fish. In Joydebpr, termites are a frequently cited problem by farmers. It is reported that the local women and children collect up the mounds which are then thrown into fish ponds. Carp, particularly rohu, catla and Thai saput appear particularly fond of termite eggs.

Feeding fish with other on-farm resources like grass, azolla have been observed by the first author in some parts of Karnataka. The addition of banana leaves to ponds stocked with grass carp was recorded by Islam [15]. Grass-
fed fishponds are reported mainly from China and Thailand [17, 18]. In a polyculture pond, the poorly-digested excreta from grass carp serve as fertilization for the pond ecosystem and also as direct feed for other fish species. The inclusion of grass carp as ‘grass bio-processor’ enables the use of near-pond grass sources and leads to marked increases in overall fish production.

3.1.5. Fish health management

i. **Dissolved oxygen deficiency**: Depletion of dissolved oxygen especially during morning hours is managed by farmers through indigenous methods like channelizing fresh spring water, beating the water with bamboo pole/banana pseudo stem (TNAU), spraying water with open containers, making children swim in ponds (Adarsh G. Pers. Comm.) etc. Saha and De (unpublished) reported the use of ducks which swim in pond and aerate the water.

ii. **Turbidity management**: For controlling persistent clay turbidity farmers in Assam apply paddy straw/pieces of banana stem [20]. The application of lime to ponds to clear unclean water and addition of pieces of banana stem was also recorded by Chowdhury et al. [19] in Bangladesh. When these substances rot, they will be removed periodically. To control algal bloom, practices like spraying cattle urine in considerable quantities [4] or mixture or red soil and sand on pond surface (Rajesh, K.M. Pers. Comm.) have been reported to be effective. Goswami et al. [6] have observed the use of bamboo poles with toothed prongs or coir rope to remove aquatic weed (Jahannesbaptistia sp.) from water bodies where *Peneaus monodon* (Bagda) is cultivated.

iii. **Argulus (fish lice) control**: In cases of infection with the crustacean ecto-parasite *Argulus* sp., farmers plant bamboo pieces in ponds. Farmers believe that the fishes can get rid of *Argulus* by rubbing their bodies against the bamboo pieces [4, 6]. In fact, Bamboo poles are good substrates for *Argulus* to breed. They colonize on bamboo poles and lay eggs on them (Hemaprasanth, Pers. Comm.). Some farmers also keep old gunny bags submerged in pond water. Bamboo poles or gunny bags will be removed periodically and dried to kill eggs of the *Argulus* deposited over them.

iv. **Leach control**: Farmers in Assam are reported to throw peels of cucumber or leaves of bitter gourd made into paste form. It is believed that these bitter plant materials help in eradicating leaches [4].

v. **Control of epizootic ulcerative syndrome (EUS)**: Application of a paste of turmeric powder and ash of hay or bamboo to control EUS has been practiced by fish farmers in Assam. Some farmers even apply branches of Neem plant into fish ponds [4]. Goswami et al. [6] have reported the use of a paste made from garlic (2 kg), salt (2 kg), CuSO4 (20 g), KMnO4 (20 g) mixed in 30-50 liter of water and sprayed over pond water of 0.133 ha pond by hatchery owners in West Bengal to control EUS. Saha and De (unpublished) reported the application of a solution of rotten jaggery on fish for controlling ulcers.

vi. **pH control**: Toddy (palm sap) is used by shrimp farmers for pH control [19]. Goswami et al. [6] have reported that banana pseudo stem can be used to increase pH through their alkaline secretion by cutting them into pieces and immersing in pond water. This practice of West Bengal farmers is reported to minimize protozoan diseases and *Argulus*.

vii. **Removal of poisonous gas**: Raking of the pond bottom by dragging tree-branches or brick suspended from a rope is practiced by some farmers for the release of obnoxious gases trapped inside the soils (Saha and De, unpublished).

viii. **Hiding places**: Farmers cultivating Australian freshwater crayfish *Cherax quadricarinatus* use tyres and bricks as hiding places [11]. They also use onion bag bundles to protect and harvest small juveniles from ponds. Use of bricks/tiles/ tyres as hid outs is also seen in India in prawn culture ponds.

3.2. Aquaculture practices based on indigenous knowledge

3.2.1. Sticks in the mud- the periphyton-based aquaculture

The acadja practice of West Africa was first described by Welcomme [20] based on the practices followed in western African countries to capture fish through trapping by establishing periphyton-based food production systems through installing bushy substrates where fish gather to breed, feed or shelter. These periphyton-based practices have been developed independently in various geographical locations all over the world, following a very similar strategy like the katha fishery in Bangladesh and the samara fishery in Cambodia. The idea of exploiting periphyton techniques in ponds, based on traditional farmers’ practices, has attracted a wide research interest [21]. Results clearly demonstrate the scope to increase fish production by using the periphyton system [22]. The practice originated from indigenous knowledge to attract fish, and fish farmers have found easy and feasible ways to understand its principle and apply it in aquaculture. The farmers in Bangladesh, where the substrate-based fish culture is more prevalent, believe that shaola (periphyton) can grow on substrate, and that this can not only be used as fish feed, but can protect the farmers’ ponds from fish poachers, since it is difficult to use nets in ponds with substrate. The substrates used by them are available within their farming systems.

3.2.2. Integrated aquaculture

Integrated fish farming systems such as crop-livestock-fish culture integration were developed by Chinese farmers thousands of years ago [23], and they are still playing a major role as nutrient-recycling strategies in many developing countries of the world.

i. **Paddy-cum-fish culture**

Paddy-cum-fish culture is considered among the most basic type of traditional integrated fish farming system in the world [11]. Archaeological evidence has indicated the possible co-evolution of agriculture and integrated aquaculture systems since more than 8000 years ago in China [24, 25], with numerous designs and experiences in experimentation and implementation [26-29]. Usually, a small portion (5-20%) of the area of the rice field is converted into a trench, a refuge pond, or both in combination. Trench layouts vary considerably in their location in the rice fields. The integrated fish-in-paddy field system functions through the feeding of fish on organisms (particularly insects and other possible rice pests) and weeds, and the stirring of the sediment through their foraging action which leads to nutrient re-suspension [30, 31]. It has been observed frequently that rice yields increase through the inclusion of fish [26, 28]. In India, where traditional aquaculture was mainly practiced along the coastline by fisheries communities, the most ancient traditional fish farming systems include the bheri system in West Bengal, the gheri system in Orissa, the pokkali system in Kerala, the khasan system of Goa and the khar lands or gazani
In West Bengal, where the salinity is either low or lowered by fresh water discharge diluting the tidal water, the cultivation of fish is undertaken in paddy fields. The bheri system is implemented for rice-fish culture or for fish monoculture. Most bheries are used for fish culture using the Kolkata city domestic sewage as the feeding source. This technique of sewage-fed system is considered to be unique, and it is the largest system under sewage-fed fish culture in the world. In pokkali fields of Kerala, which cover an area of around 12,50,000 ha, summer fallow months are utilized for brackish water aquaculture. These fields are under the influence of Vembanad backwaters, which are in, turn controlled by tides. Rice is cultivated in these fields, as they are flooded during southwest monsoon (June-September). Fish and prawns are cultured during other periods. Immediately after the harvest of rice, the fields are leased out for the culture of fish and prawns. The small fishes and prawns enter the fields from near shore waters along with high tides. These fishes feed on the vegetative contents of the left over paddy plants and weeds. The production of fish and shrimp in such culture varies from 500 to 1,200 kg/ha. After the prawn harvest, the water is drained off. Subsequently, the saline nature of rice fields is nullified because of the monsoon rains and the fields are again made fit for rice culture. The traditional paddy varieties used even withstood the flooding by the 2004 tsunami. The pokkali paddy is a unique variety which is known to be saline, flood and acid resistant. This organically grown variety is known for its peculiar taste, high protein content and medicinal properties.

Apatani paddy-cum-fish cultivation is an indigenous farming system of North East India. The system is based on the construction of a main dam and secondary dykes to regulate the entrance of seawater and to facilitate the storage of rain water into the rice field, in order to create a brackish environment appropriate for rice and fish culture. This “artificial” ecosystem created by rainfall water mixed with sea water decreases the number of predatory species less tolerant to low salinity. The integration of paddy cultivation with fish culture has also been an indigenous practice followed in other Asian countries. In Bangladesh, a recent achievement is the control of the golden apple snail, a rice pest, by the common carp. A beneficial technology for smallholders has been the use of rice fields as nurseries for rearing fish fry to fingerlings during the 3-month rice-cropping period. In Indonesia, traditional systems combined rice and fish culture and the wastes from this system often flowed downstream into brackish water aquaculture systems. The beneficial technology for smallholders has been the use of rice fields as nurseries for rearing fish fry to fingerlings during the 3-month rice-cropping period. In Indonesia, traditional systems combined rice and fish culture and the wastes from this system often flowed downstream into brackish water aquaculture systems. The beneficial technology for smallholders has been the use of rice fields as nurseries for rearing fish fry to fingerlings during the 3-month rice-cropping period. In Indonesia, traditional systems combined rice and fish culture and the wastes from this system often flowed downstream into brackish water aquaculture systems. The beneficial technology for smallholders has been the use of rice fields as nurseries for rearing fish fry to fingerlings during the 3-month rice-cropping period. In Indonesia, traditional systems combined rice and fish culture and the wastes from this system often flowed downstream into brackish water aquaculture systems.

Integration of Makkhanna cultivation with fish culture

Integration of Makkhanna (Exaraya ferox) cultivation with fish culture is reported from Manipur. Indian major carps and exotic carps, air-breathing fishes like Channa sp. and Anabas testudineus have been used for culture. Makkhanna fruits are tasty, have herbal value, mature and immature fruits serve as vegetables and the tender leaves and petioles also serve as vegetables after removing the spiny part. The rhizome of the plant is used as diuretic and in the treatment of dropsy, jaundice, scabies and gonorrhoea. Ripe seeds are used in the treatment of chronic diarrhea. The plants are propagated from mature seeds. Soaked mature seeds are sown up to the end of January in a separate pond. Seedlings are transplanted in culture ponds with a plant to plant gap of 5-6 ft, accommodating around 700-800 plants/ha. The integration is reported to give farmer a net profit of around Rs. 1,78,525/ha/yr.

Trenches in fruit orchards: In the Mekong Delta in southern Vietnam, farmers implement a system of trenches within their fruit orchards, usually surrounded by a lateral trench and a connection to the adjacent rice field. Fish and freshwater prawns can move between the sub-systems and benefit from the decomposing rice straw, the fallen fruit and from insects dropping into the water. Mangroves and brackish water shrimps: The term ‘forestry-fish’ co-culture is used for the cultivation of brackish water fish and shrimps in fenced-off mangrove forests in Malaysia, the Philippines and Vietnam. Bamboo-fish culture is conducted in China, in which the mud from fish ponds is used to fertilize bamboo plantations grown around the ponds. The waste from the processing of the bamboo shoots is fed into fishponds.

Another system previously utilised widely in China is the combination of aquaculture and mulberry trees growing adjacent to ponds, in which silkworm droppings and waste pupae are fed into fishponds along with the washings from silkworm trays.

4. Conclusion

In the coming years, small scale aquaculture (sometime referred to as ‘rural aquaculture’) is poised to play significant
role in increasing freshwater fish production in the country. This low-input aquaculture system is closely associated with Indigenous Technical Knowledge (ITKs). Though efforts are made to identify, validate and recommend ITK by some Governments, much indigenous knowledge remains undocumented. There is a need to recognize ITK, compile, value and appreciate their interaction with local communities. The enhancement of the quality of life of the people who depend on aquaculture production would be almost impossible if this rich tradition of ITK is kept to a few people. Therefore, ITK needs to be incorporated into the zonal research and development agenda. However, before reliable recommendations can be made, there is an urgent need to understand, critically validate and document the different ITKs so as to integrate the best ones into the farming system.

5. References
34. Ranga MR. Transformation of coastal wetland agriculture and livelihoods of Kerala, India. Master’s Thesis. Winnipeg Natural Resources Institute, University of Manitoba, 2006, 185.