Introduction

Fish is the most important source of protein, which contains all the essential amino acids in their right proportion, other nitrogenous compounds, water, lipids, carbohydrates, minerals and vitamins. Fish diet has high commercial and medicinal values [1]. The main sources of energy reserves in fish are protein and lipid. The relative contributions of lipids content and amino acids to energy production in fish depends on a number of factors such as the species involved of lipids [2,3], environmental conditions [4,5], stage of maturity of the gonads [6,7], nutritional state [8], and age [9]. The concentration of lipid varies considerably in different parts of the body of the fish [10]. Saurida undosquamis is one of the main coastal demersal target species of commercial interest in the Eastern Mediterranean particularly in Egypt. It is among the Lessepsian species that had invaded the Red Sea via the Suez Canal and Kosswig (1951) [11] was the first author report this species in Turkish seas. Freezing is a common practice in the meat, fish and other animal protein based industry, because it preserved the quality for an extended time and offers several advantages such as insignificant alterations in the product dimensions and minimum deterioration in products color, flavor and texture [12]. Frozen storage is an important method for processing of fish. However, when seafoods are frozen and stored in frozen state they necessarily lose quality [13]. Loss in quality of frozen stored fish is mainly due to changes in muscle integrity, proteins and lipids [14]. Cellular disintegration during frozen storage can cause acid hydrolysis of lipids to free fatty acids. The changes in fish muscle fibers, proteins, lipids and textural properties during frozen storage have been studied for several decades because of their economic importance, (15-18) also due to this importance Beroumand and Jooyandeh, (2010) [19] found that the consideration of the types of packaging, maintenance of proper storage temperature and freezing properties of different species must be given for great importance on the quality of fish. These mean that fish if necessary should be stored, for a short period of time to retain the taste, and provide both the protein and fat at optimal level.
Fish is also a vitamin economic value but rich in nutritional value are often not and mineral rich food [20]. Minerals have important tasks in metabolism. Levels of heavy metals and minerals in muscle tissues of marine species have been determined by many researchers [22,25] such as Ca, Mg, and P. The aim of the study is to evaluate the nutritive value of protein, lipid, moisture, ash, pH and minerals (magnesium, calcium and phosphorus) in fresh muscle of Saurida undosquamis and stored in conditions (-20°C) for 7, 14 and 21 days comparing with imported frozen muscle and to investigate the quality changes during its frozen storage.

2. Materials and Methods

2.1 Sample Collection

A total of 50 fresh and frozen imported brushtooth lizard fish Saurida undosquamis (Richardson, 1848), were examined during period of November 2014 to March of 2015. They were divided into two groups (25) fresh Saurida undosquamis were obtained from Red Sea by local fishermen and (25) imported frozen fish were bought from local fish markets. The collected fresh and imported frozen fish samples were kept immediately in ice on polyethylene bags and transported to the physiology Lab of NIOF, Alexandria to sustain freshness. Fish were cleaned with deionized-distilled water and muscle tissue was taken from the dorsal part of fish. All samples were kept in cold storage at -20°C until biochemical analysis. Fresh muscle was frozen at a temperature -20°C for different times (7, 14 and 21 days). Samples were analyzed for the biochemical composition of the dried tissues.

2.2 Biochemical analysis

The total protein content was determined using Lowry et al. (1951) [26] method. 10 mg of sample, 1ml NaOH was added for protein extraction in water bath for 30 minutes. Thereafter, it was cooled at room temperature and neutralized with 1 ml HCL. The extracted sample was centrifuged at 2000 rpm for 10 minutes and 1 ml of the sample was further diluted with distilled water (1:9 v/v). From the diluted sample, 10 minutes and 1 ml of the sample was further diluted with 50 ml in volumetric flasks. Concentrations of minerals were measured using Atomic Absorption Spectrophotometer (Perkin Elmer) 2280.

Table 1: Biochemical composition (%) fresh and frozen muscles of Saurida undosquamis

<table>
<thead>
<tr>
<th>Proximate composition</th>
<th>Fresh Fish</th>
<th>Fish frozen 7 days</th>
<th>Fish frozen 14 days</th>
<th>Fish frozen 21 days</th>
<th>Imported frozen fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein %</td>
<td>25.48±1.32</td>
<td>23.12±1.99</td>
<td>20.64±1.15</td>
<td>13.46±1.32</td>
<td>22.46±0.87</td>
</tr>
<tr>
<td>Lipid %</td>
<td>3.53±0.18</td>
<td>3.20±0.03</td>
<td>3.31±0.06</td>
<td>3.05±0.23</td>
<td>3.38±0.12</td>
</tr>
<tr>
<td>Moisture %</td>
<td>71.60±2.56</td>
<td>70.40±3.31</td>
<td>68.80±1.02</td>
<td>66.20±1.36</td>
<td>68.80±0.85</td>
</tr>
<tr>
<td>Ash %</td>
<td>0.86±0.08</td>
<td>0.91±0.15</td>
<td>0.90±0.07</td>
<td>1.16±0.12</td>
<td>1.19±0.16</td>
</tr>
<tr>
<td>pH</td>
<td>6.50±0.07</td>
<td>6.68±0.17</td>
<td>6.82±0.09</td>
<td>6.88±0.37</td>
<td>6.94±0.07</td>
</tr>
</tbody>
</table>

Means with different superscripts in the same raw are significantly different at P<0.05.

Statistical analysis

Statistical analysis was carried out using analysis of variance (ANOVA) available in MS-Excel 2007 to evaluate the effect of freezing on muscles during storage (7, 14 and 21) days at -20°C. Means were compared using Duncan’s test (1955) [31]. All data were expressed as means standard error (M±SE) and the significance level was set at P<0.05.

3. Results and Discussion

Fish is an important part of a healthy diet because they are considered to be an excellent source of high value protein and essential nutrients. The mean (±SE) of protein, lipid, moisture, ash, pH for fresh and imported frozen Saurida undesquamis muscle are presented in Table (1) compared with fresh muscle that was frozen for 7, 14 and 21 days at (-20°C).

Freezing is a common practice in the meat fish because it preserved the quality for an extended time, minimum deterioration in products color, flavor and texture [32], while there are some disadvantages associated with frozen storage including freezer burn, product dehydration, rancidity, drip loss and product bleaching which can have an overall effect on the quality of the frozen foods [33]. Deterioration during frozen storage is inevitable, and in order to obtain satisfactory results, fish for freezing must be of good quality.

3.1 Total Protein Content

The maximum mean value of total protein content 25.48±1.32% was recorded for fresh muscle while the minimum value was 13.46±1.32% after 21 days of freezing. Protein content in imported frozen fish was recorded 24.44±1.80%. According to statistical findings, there were significant (P<0.05) differences in the crude protein of both fresh fish and fresh muscle after 14 and 21 days of freezing, also show a significant difference between fresh muscle that was frozen for 7 and 14 days and fresh muscle after 21 days of freezing.
freezing. While there were no significant differences (p>0.05) between the fresh fish, imported frozen fish and fresh fish after 7 and 14 days of freezing. Protein and lipid are the major nutrients in fish and their levels help to define the nutritional status of the particular organism. Proteins are important for growth and development of body. These results are in agreement with Siddique et al. (2011) on Puntius sp. Reported significant decrease in protein content during frozen storage at -50°C of 20 days on frozen fish muscle of Labeo rohita in Puntius sp. for 21 days (18) and fresh and frozen Tilapia nilotica muscles for 8 weeks frozen storage (18). The protein content was decreased due to denaturation and loss in gelatin caused by extended frozen storage also due to proteolysis induced by enzymatic activities of psychotropic microbial growth.

3.2 The total lipid content
The total lipid content slightly decreased during the time of freezing. It was recorded 3.5±0.18%, 3.19±0.03%, 3.13±0.06% and 3.05±0.23% at (fresh muscle fish, 7, 14 and 21 days) respectively. The lipid content of muscle imported frozen was decreased to 3.38±0.12%. There were no significant difference (p>0.05) in the lipid content. Protein and lipid are the major nutrients in fish and their levels help to define the nutritional status of the particular organism. These results come in agreement with Arannilewa et al. (2005) calculated 25.92% decrease in total lipid content in Tilapia after storing it in freezer for 60 days and the similar trend of fat content obtained in mackerel increased during frozen storage. Azzam et al. (2012) studied the determination chemical composition (lipid, protein, ash, moisture and glycogen) in four fish species from Tigris River in North of Iraq; Gandotra et al. (2012) studied on muscle of Labeo Rohita (Ham- Buch). Those workers attributed this loss of lipid occurred mainly due to losses in triglyceride fraction and due to the oxidation rancidity.

3.3 The moisture content
The moisture percentage was found to be 71.6±2.56% in fresh muscle while the value decreased to 68.8±0.85% in imported frozen fish. The fresh muscle samples slightly decreased significantly (P<0.05) 70.4±3.31%, 68.8±1.02% and 66.2±1.36% respectively after 7, 14 and 21 days of freezing at -20°C. These results were in accordance with Roopma et al. (2012) who reported a decrease in total moisture content in muscle samples of Mystus seenghala stored at two different low temperature 4°C chilled and -12°C frozen. They advocated that the more decrease in moisture content was due to evaporation of moisture from meat in chiller whereas the decrease in moisture content was due to sublimation of surface water of meat in the freezer. On contrary to the results of present study, Siddique et al. (2011) found an increasing trend in moisture content meanwhile, Kirschnik et al. (2006) observed that moisture content was constant for 14 days in samples of tail meat of the giant river prawn, Macrobrachium rosenbergii stored without direct contact in ice.

3.4 Ash content
In the present study, the ash content was 0.86 ±0.08% in the fresh samples while increased to 1.19 ±0.16 in imported frozen fish and 1.16±0.12 in fresh fish after 21 days of freezing. The ash content has shown slight increase of no significant importance (P>0.05). These results are in agreement with Fouad (2011) who observed that the ash content remained almost the same throughout the 1, 2, 3 weeks of frozen storage of carp. While Roopma et al. (2012) and Mariam (2013) both of them observed that the ash content decreased with storage time of Mystus seenghala (4±1°C and-12±2°C) and of Tilapia at the end of the eight weeks of freezing. Ash in fish muscle contains nutritionally important minerals. The increase in ash contact was affected with mineral percentage in fish muscle, physiological parameters and nutrition.

3.5 pH value
In addition, pH was found to be 6.5 ±0.07 in fresh muscle and increased significantly (P<0.05) to the value 6.94±0.07 in imported frozen fish. There was comparatively slow increase in pH between fresh muscles during freezing period. It was increased from 6.68±0.17 to 6.88±0.37 respectively. There was significant differences (p<0.05) between fresh fish and imported frozen fish and fresh fish that was frozen for 14 and 21 days. No significant difference between groups of fresh fish that was exposed to the different freezing periods and imported frozen fish. These results are in accordance with Erkan and Ozden (2008) who stated that the increase was due to an increase in volatile bases from the decomposition of nitrogenous compounds by endogenous or microbial enzymes. Obemeata et al. (2011) observed that the increase in pH was higher in the 4°C stored sample of Tilapia, indicating that biochemical and microbial changes are occurring faster in 4°C stored fish. Pawar et al. (2013) showed slightly increased pH in Catla catla from 6.50 to 6.79 when stored at chilled temperature (-2 to 4°C). The change in pH of fish muscle is usually good index for quality assessment. The increase in pH is caused by the enzymatic degradation of fish muscle.

3.6 Mineral composition
Fish is a potential source of minerals such as phosphorus, magnesium and calcium. These elements are essential for normal tissue metabolism and for maintenance of health are adequate in fish. The mineral composition in fresh, frozen and imported frozen Saurida undquisamius muscle were presented in (table 2). The elemental concentrations of the fishes were expressed in mg/100g. Among the nutrient elements investigated the most abundant was calcium followed by phosphorus and magnesium. The mean values of magnesium decreased during frozen storage. They decreased in imported frozen muscle fish 1.04±0.02 mg/100g, while in fresh muscle was 1.16±0.03 mg/100g. The maximum mean values of calcium and phosphorus were recorded 9.28±0.50 mg/100g and 3.28±0.41 mg/100g for fresh fish while the minimum were recorded 5.72±0.35 mg/100g and 2.02±0.16 mg/100g for imported frozen fish respectively. There was not a clear relationship between the Mg concentration and the different freezing period. Significant differences for phosphorus was observed between fresh fish, imported frozen fish and fresh fish that were frozen to 7, 21 days. Calcium concentration decreased significantly (P<0.05) to 7.8±0.39 at 21 days of freezing.
Calcium and phosphorus are necessary for chemical reactions in fish muscle during growth and the quality of fish. The increases of pH value for imported frozen fish and increase in ash and pH value compared with fresh muscle increase as the storage period increase. The proliferation of bacteria, protein denaturation, lipid hydrolysis and oxidation accelerated during frozen storage time. The results of this study showed that the better quality of fish frozen after 7 days of freezing and the quality of fish is best before frozen storage. The rate of deterioration was accelerated during frozen storage time. The proliferation of bacteria, protein denaturation, lipid hydrolysis and oxidation increase as the storage period increase. The freezing of fresh fish leads to decrease in protein %, lipid %, and moisture % and increase in ash and pH value compared with fresh muscle fish. The increases of pH value for imported frozen Saurida undosquamis make more exposure for the decomposition. Recommendation is eating fresh fish which is most benefit for human health.

There is a slight change with respect to frozen period in all the mineral evaluated and attributed that to the drip loss and the dehydration associated with frozen storage. These results are agreement with [46, 36]. Calcium and phosphorus are necessary to maintain an optimal bone development, with more of both minerals being required during childhood and growing stages to prevent rickets and osteomalacia [47]. Magnesium is required in the plasma and extra cellular fluid, where it helps in maintaining osmotic equilibrium. It is also required in many enzyme catalyzed reactions.

4. Conclusion
The results of this study showed that the better quality of frozen fish found after 7 days of freezing and the quality of fish is best before frozen storage. The rate of deterioration was accelerated during frozen storage time. The proliferation of bacteria, protein denaturation, lipid hydrolysis and oxidation increase as the storage period increase. The freezing of fresh fish leads to decrease in protein %, lipid %, and moisture % and increase in ash and pH value compared with fresh muscle fish. The increases of pH value for imported frozen Saurida undosquamis make more exposure for the decomposition. Recommendation is eating fresh fish which is most benefit for human health.

5. References
11. Kosswig C. Contributions to the knowledge of the zoogeographical situation in the near and Middle East. Experimentia 1951; 7:401-440.
23. Yilmaz AB, Sangun MK, Yagilolu D, Turan C. Metals and some trace element levels in Thin lip Mullet, Liza ramada Caught from Mersin Gulf. Ekoloji
2008; 17:11-16.